Locking and shear scaling factors in C° bending elements

Abstract Two types of locking are identified in linear field C ° elements: locking caused by shear resistance in constant curvature deformation and in linear curvature deformation, respectively. Locking of the first type can be ameliorated by decoupling constant curvature bending from shear, which in some elements can be achieved by selective reduced integration. Once the modes are decoupled, a scaling factor on the shear stiffness can be used to alleviate the second type of locking. These findings are explained in terms of a linear displacement, linear rotation beam element and applied to the improvement of a triangular plate element. It is shown that the resulting triangular plate element is free from locking and performs excellently in a wide variety of problems.

[1]  S. B. Dong,et al.  On a hierarchy of conforming timoshenko beam elements , 1981 .

[2]  J. S. Przemieniecki Theory of matrix structural analysis , 1985 .

[3]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[4]  T. Belytschko,et al.  A C0 triangular plate element with one‐point quadrature , 1984 .

[5]  Isaac Fried,et al.  Residual energy balancing technique in the generation of plate bending finite elements , 1974 .

[6]  Jean-Louis Batoz,et al.  An explicit formulation for an efficient triangular plate‐bending element , 1982 .

[7]  Gangan Prathap,et al.  An optimally integrated four‐node quadrilateral plate bending element , 1983 .

[8]  A. Pifko,et al.  Aspects of a simple triangular plate bending finite element , 1980 .

[9]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[10]  Isaac Fried,et al.  Triangular, nine-degrees-of-freedom, $C^0$ plate bending element of quadratic accuracy , 1973 .

[11]  Thomas J. R. Hughes,et al.  An improved treatment of transverse shear in the mindlin-type four-node quadrilateral element , 1983 .

[12]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[13]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[14]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[15]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[16]  Isaac Fried Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number , 1972 .

[17]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[18]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[19]  Isaac Fried,et al.  Shear in C0 and C1 ending finite elements , 1973 .

[20]  Ted Belytschko,et al.  A study of shear factors in reduced-selective integration mindlin beam elements , 1983 .

[21]  T. Belytschko,et al.  Bending and Shear Mode Decomposition in C° Structural Elements , 1983 .