Structure of Sodium Carboxymethyl Cellulose Aqueous Solutions: A SANS and Rheology Study

We report a small angle neutron scattering (SANS) and rheology study of cellulose derivative polyelectrolyte sodium carboxymethyl cellulose with a degree of substitution of 1.2. Using SANS, we establish that this polymer is molecularly dissolved in water with a locally stiff conformation with a stretching parameter. We determine the cross sectional radius of the chain ( 3.4 Å) and the scaling of the correlation length with concentration (ξ = 296 c−1/2Å for c in g/L) is found to remain unchanged from the semidilute to concentrated crossover as identified by rheology. Viscosity measurements are found to be in qualitative agreement with scaling theory predictions for flexible polyelectrolytes exhibiting semidilute unentangled and entangled regimes, followed by what appears to be a crossover to neutral polymer concentration dependence of viscosity at high concentrations. Yet those higher concentrations, in the concentrated regime defined by rheology, still exhibit a peak in the scattering function that indicates a correlation length that continues to scale as. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 492–501

[1]  L. Hilliou,et al.  Rheological characterization of commercial highly viscous alginate solutions in shear and extensional flows , 2014, Rheologica Acta.

[2]  J. Jestin,et al.  New regime in polyelectrolyte solutions , 2014 .

[3]  J. García de la Torre,et al.  Influence of ionic strength on the flexibility of alginate studied by size exclusion chromatography. , 2014, Carbohydrate polymers.

[4]  Hongbin Zhang,et al.  Rheological studies of hyaluronan solutions based on the scaling law and constitutive models , 2014 .

[5]  N. Willenbacher,et al.  Chain flexibility and dynamics of polysaccharide hyaluronan in entangled solutions: a high frequency rheology and diffusing wave spectroscopy study. , 2013, Biomacromolecules.

[6]  G. Pabst,et al.  Probing the Mesh Formed by the Semirigid Polyelectrolytes , 2013 .

[7]  Philippe Lorchat Structure des solutions aqueuses de polyélectrolytes fortement chargés , 2012 .

[8]  H. Bianco-Peled,et al.  Conformation of a natural polyelectrolyte in semidilute solutions with no added salt , 2012 .

[9]  P. Basser,et al.  Chondroitin Sulfate in Solution: Effects of Mono- and Divalent Salts. , 2012, Macromolecules.

[10]  Jin-He Wang,et al.  Isolable chiral aggregates of achiral π-conjugated carboxylic acids. , 2012, Chemistry.

[11]  W. Marsden I and J , 2012 .

[12]  Tal Ben-Nun,et al.  Solution X-ray scattering form factors of supramolecular self-assembled structures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[13]  R. Colby Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions , 2010 .

[14]  A. Thünemann,et al.  Characterization of poly(N-vinyl-2-pyrrolidone)s with broad size distributions , 2010 .

[15]  M. Liberatore,et al.  Rheology and viscosity scaling of the polyelectrolyte xanthan gum , 2009 .

[16]  Anne Adden Substitution Patterns in and over Polymer Chains: New Approaches for Carboxymethyl Cellulose , 2009 .

[17]  C. Rochas,et al.  Structure of natural polyelectrolyte solutions: role of the hydrophilic/hydrophobic interaction balance. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[18]  C. Cametti,et al.  Dielectric properties of differently flexible polyions: a scaling approach. , 2009, Physical chemistry chemical physics : PCCP.

[19]  A. Yethiraj Liquid state theory of polyelectrolyte solutions. , 2009, The journal of physical chemistry. B.

[20]  C. Cametti,et al.  Counterion condensation of differently flexible polyelectrolytes in aqueous solutions in the dilute and semidilute regime. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  R. Colby,et al.  Solution Rheology of a Strongly Charged Polyelectrolyte in Good Solvent , 2008 .

[22]  B. Wolf,et al.  Polyelectrolytes: Intrinsic Viscosities in the Absence and in the Presence of Salt , 2008 .

[23]  J. Carrillo,et al.  Rouse Dynamics of Polyelectrolyte Solutions: Molecular Dynamics Study , 2007 .

[24]  M. Rawiso,et al.  Flexible Conjugated Polyelectrolyte Solutions: A Small Angle Scattering Study , 2007 .

[25]  P. Carreau,et al.  Viscoelastic properties of chitosan solutions: Effect of concentration and ionic strength , 2006 .

[26]  A. Dobrynin,et al.  Theory of polyelectrolytes in solutions and at surfaces , 2005 .

[27]  M. Cowman,et al.  Experimental approaches to hyaluronan structure. , 2005, Carbohydrate research.

[28]  Ferenc Horkay,et al.  Clustering and Solvation in Poly(acrylic acid) Polyelectrolyte Solutions , 2005 .

[29]  R. Colby,et al.  Charge density effects in salt‐free polyelectrolyte solution rheology , 2006 .

[30]  Cesare Cametti,et al.  Dielectric spectroscopy and conductivity of polyelectrolyte solutions , 2004 .

[31]  T. Waigh,et al.  Structure and Dynamics in Aqueous Solutions of Amphiphilic Sodium Maleate-Containing Alternating Copolymers , 2004 .

[32]  F. Candau,et al.  Rheological properties of multisticker associative polyelectrolytes in semidilute aqueous solutions , 2004 .

[33]  R. Schweins,et al.  Dilute solution behaviour of sodium polyacrylate chains in aqueous NaCl solutions , 2003 .

[34]  W. Burchard Solubility and Solution Structure of Cellulose Derivatives , 2003 .

[35]  F. Boué,et al.  Persistence length for a model semirigid polyelectrolyte as seen by small angle neutron scattering: a relevant variation of the lower bound with ionic strength , 2003, The European physical journal. E, Soft matter.

[36]  D. Langevin,et al.  Surfactant-Induced Collapse of Polymer Chains and Monodisperse Growth of Aggregates near the Precipitation Boundary in Carboxymethylcellulose−DTAB Aqueous Solutions , 2003 .

[37]  C. Cametti,et al.  Electrical conductivity of polyelectrolyte solutions in the semidilute and concentrated regime: The role of counterion condensation , 2002 .

[38]  K. Nishida,et al.  Added Salt Effect on the Intermolecular Correlation in Flexible Polyelectrolyte Solutions: Small-Angle Scattering Study , 2002 .

[39]  Oliver Biermann Molecular dynamics simulation study of polyelectrolyte adsorption on cellulose surfaces , 2002 .

[40]  Catherine Esquenet,et al.  Aggregation Behavior in Semidilute Rigid and Semirigid Polysaccharide Solutions , 2002 .

[41]  M. Sedlák Generation of multimacroion domains in polyelectrolyte solutions by change of ionic strength or pH (macroion charge) , 2002 .

[42]  K. Roberts,et al.  Thesis , 2002 .

[43]  Jianji Wang,et al.  The effect of ionic strength on the viscosity of sodium alginate solution , 2001 .

[44]  Christian Clasen,et al.  Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives , 2001 .

[45]  K. Nishida,et al.  High concentration crossovers of polyelectrolyte solutions , 2001 .

[46]  Mohamed A. Edali,et al.  Rheological properties of high concentrations of carboxymethyl cellulose solutions , 2001 .

[47]  J. Douglas,et al.  Influence of counterion valency on the scattering properties of highly charged polyelectrolyte solutions , 2001 .

[48]  W. Burchard,et al.  Structures of cellulose in solution , 2000 .

[49]  Horng-Long Cheng,et al.  A Simple Method To Estimate Chain Conformations of Polyelectrolytes in the Semidilute Regime , 2000 .

[50]  W. Krause,et al.  Semidilute solution rheology of polyelectrolytes with no added salt , 1999 .

[51]  T. Norisuye,et al.  Chain Stiffness and Excluded-Volume Effects in Sodium Poly(styrenesulfonate) Solutions at High Ionic Strength , 1999 .

[52]  G. Fuller,et al.  Characterization of the flow properties of sodium carboxymethylcellulose via mechanical and optical techniques , 1999 .

[53]  E. Amis,et al.  Domain Structures in Low Ionic Strength Polyelectrolyte Solutions , 1998 .

[54]  B. Bijsterbosch,et al.  Persistence Length of Carboxymethyl Cellulose As Evaluated from Size Exclusion Chromatography and Potentiometric Titrations , 1998 .

[55]  R. Colby,et al.  Rheology of Sulfonated Polystyrene Solutions , 1998 .

[56]  M. Peter,et al.  Physico-chemical characterization of chitosans varying in degree of acetylation , 1998 .

[57]  Thomas Heinze,et al.  Comprehensive cellulose chemistry , 1998 .

[58]  E. Minatti,et al.  Surfactant/polymer assemblies. 1. Surfactant binding properties , 1998 .

[59]  T. Norisuye,et al.  Excluded-Volume Effects in Sodium Hyaluronate Solutions Revisited , 1998 .

[60]  W. Jesse,et al.  Structure and Charge Distribution in DNA and Poly(styrenesulfonate) Aqueous Solutions , 1997 .

[61]  M. Sedlák THE IONIC STRENGTH DEPENDENCE OF THE STRUCTURE AND DYNAMICS OF POLYELECTROLYTE SOLUTIONS AS SEEN BY LIGHT SCATTERING : THE SLOW MODE DILEMMA , 1996 .

[62]  N. Matsumoto,et al.  Viscoelastic properties of polyelectrolyte solutions in non-entangled concentrated regions , 1996 .

[63]  G. Wegner,et al.  Synthesis and Characterization of Rigid Rod Poly(p-phenylenes) , 1996 .

[64]  S. Harding,et al.  Static Light Scattering Studies on Xanthan in Aqueous Solutions , 1996 .

[65]  T. Nishio Monte Carlo studies on potentiometric titration of (carboxymethyl)cellulose. , 1996, Biophysical chemistry.

[66]  Andrey V. Dobrynin,et al.  Scaling theory of polyelectrolyte solutions , 1995 .

[67]  R. Duplessix,et al.  Small Angle Neutron Scattering from Polyelectrolyte Solutions: From Disordered to Ordered Xanthan Chain Conformation , 1995 .

[68]  S. Saito,et al.  A small‐angle x‐ray scattering study of alginate solution and its Sol–Gel transition by addition of divalent cations , 1995 .

[69]  M. Rinaudo,et al.  Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. , 1993, International journal of biological macromolecules.

[70]  C. Tiu,et al.  Improved correlation for shear-dependent viscosity of polyelectrolyte solutions , 1993 .

[71]  D. Dudis,et al.  Molecular dynamics of rigid rod polymers , 1993 .

[72]  M. Mandel,et al.  On the Charge Structure Function of Rodlike Polyelectrolytes , 1992 .

[73]  S. Fraden,et al.  Liquidlike Order of Charged Rodlike Particle Solutions , 1992 .

[74]  Richey M. Davis Analysis of dilute solutions of (carboxymethyl)cellulose with the electrostatic wormlike chain theory , 1991 .

[75]  G. Pavlov,et al.  Hydrodynamic properties of poly(1-vinyl-2-pyrrolidone) molecules in dilute solution , 1990 .

[76]  V. Bloomfield,et al.  Osmotic pressure of polyelectrolytes without added salt , 1990 .

[77]  Lin Xiquan,et al.  Kinetics of the carboxymethylation of cellulose in the isopropyl alcohol system , 1990 .

[78]  M. Hagenbüchle,et al.  Static light scattering by solutions of salt-free polyelectrolytes , 1989 .

[79]  M. Rinaudo,et al.  Dependence of the Stiffness of the Xanthan Chain on the External Salt Concentration , 1989 .

[80]  S. Hasegawa,et al.  Hydration of carboxymethyl cellulose and carboxymethyl dextran , 1988 .

[81]  M. Rinaudo,et al.  On the viscosity of sodium alginates in the presence of external salt , 1986 .

[82]  W. Russel,et al.  On the theory of dilute polyelectrolyte solutions: Extensions, refinements, and experimental tests , 1986 .

[83]  I. Noda,et al.  Investigation of local conformations of polyelectrolytes in aqueous solution by small-angle x-ray scattering. 1. Local conformations of poly(sodium acrylates) , 1985 .

[84]  S. V. Bushin,et al.  Hydrodynamic invariant of polymer molecules , 1984 .

[85]  J. Reuben,et al.  Analysis of the carbon-13 n.m.r. spectrum of hydrolyzed O-(carboxymethyl)cellulose: monomer composition and substitution patterns , 1983 .

[86]  K. Kamide,et al.  Persistence length of cellulose and cellulose derivatives in solution , 1983 .

[87]  P. Hagerman,et al.  Investigation of the flexibility of DNA using transient electric birefringence , 1981, Biopolymers.

[88]  Rosa María Velasco,et al.  Remarks on polyelectrolyte conformation , 1976 .

[89]  H Eisenberg,et al.  The flexibility of low molecular weight double-stranded DNA as a function of length. I. Light scattering measurements and the estimation of persistence lengths from light scattering, sedimentation and viscosity. , 1976, Biophysical chemistry.

[90]  K. Nishida,et al.  Electron microscopic photographs of sodium carboxymethylcellulose precipitated with hydrochloric acid , 1975 .

[91]  D.M.W. Anderson Industrial Gums, Polysaccharides and their Derivatives , 1975 .

[92]  A. Ganz,et al.  Some rheological properties of sodium carboxymethylcellulose solutions and gels , 1974 .

[93]  A. Iwasaki,et al.  Studies of the optical properties of acridine orange-sodium carboxymethylcellulose complexes , 1973 .

[94]  O. Smidsrod Solution properties of alginate , 1970 .

[95]  Gerald S. Manning,et al.  Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties , 1969 .

[96]  W. Brown,et al.  Studies on cellulose derivatives. Part IV. The configuration of the polyelectrolyte sodium carboxymethyl cellulose in aqueous sodium chloride solutions , 1964 .

[97]  J. H. Elliott,et al.  Rheology of Sodium Carboxymethylcellulose Solutions , 1957 .

[98]  C. Tanford Macromolecules , 1994, Nature.

[99]  R. M. Fuoss,et al.  Polyelectrolytes. II. Poly-4-vinylpyridonium chloride and poly-4-vinyl-N-n-butylpyridonium bromide† , 1948 .