A low loss, dielectric substrate in ZnAl2O4–TiO2 system for microelectronic applications

A temperature stable low loss substrate based on 0.83ZnAl2O4–0.17TiO2 (ZAT) was developed as a substitute to Al2O3 for possible applications in microelectronic industry as substrates and packaging materials. The thermal conductivity of ZAT is 59Wm−1K−1 which is more than twice as that of Al2O3. The thermal-expansion coefficient of this dielectric is 6.3ppm∕°C which is comparable to that of silicon used in microelectronic circuitry. Furthermore, 0.83ZnAl2O4–0.17TiO2 dielectric is chemically inert with silicon, which increases its applicability in microelectronic packages.

[1]  R. Buchanan Ceramic Materials for Electronics , 2018 .

[2]  P. Mohanan,et al.  Temperature stable low loss ceramic dielectrics in (1-x)ZnAl$\mathsf{_{2}}$O$\mathsf{_{4}}$-xTiO$\mathsf{_{2}}$ system for microwave substrate applications , 2004 .

[3]  S. Roberts,et al.  Surface mechanical analyses by Hertzian indentation , 2004 .

[4]  J. Bisquert,et al.  Effect of humidity on the ac conductivity of nanoporous TiO2 , 2003 .

[5]  R. W. Schwartz,et al.  Thermal properties of La0.5Sr0.5Co1−xNixO3−δ ceramics using photopyroelectric technique , 2003 .

[6]  K. M. Nair Dielectric materials and devices , 2002 .

[7]  M. Persin,et al.  Filtration of electrolyte solutions with new TiO2–ZnAl2O4 ultrafiltration membranes in relation with the electric surface properties , 2001 .

[8]  A. Hofmeister,et al.  Thermal conductivity of spinels and olivines from vibrational spectroscopy: Ambient conditions , 2001 .

[9]  A. Larbot,et al.  Elaboration and properties of TiO2–ZnAl2O4 ultrafiltration membranes , 2001 .

[10]  J. Philip,et al.  Simultaneous determination of thermal conductivity and heat capacity near solid state phase transitions by a photopyroelectric technique , 2000 .

[11]  D. R. Frear,et al.  Materials issues in area-array microelectronic packaging , 1999 .

[12]  M. Marinelli,et al.  Simultaneous determination of specific heat, thermal conductivity and thermal diffusivity at low temperature via the photopyroelectric technique , 1990 .

[13]  Robert O. Pohl,et al.  The intrinsic thermal conductivity of AIN , 1987 .

[14]  B. W. Hakki,et al.  A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range , 1960 .