Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1

In this paper we consider, in dimension d≥ 2, the standard $$\mathbb{P}_{1}$$ finite elements approximation of the second order linear elliptic equation in divergence form with coefficients in L∞(Ω) which generalizes Laplace’s equation. We assume that the family of triangulations is regular and that it satisfies an hypothesis close to the classical hypothesis which implies the discrete maximum principle. When the right-hand side belongs to L1(Ω), we prove that the unique solution of the discrete problem converges in $$W^{1,q}_0(\Omega)$$ (for every q with $${1 \leq q < \frac{d}{d-1}}$$) to the unique renormalized solution of the problem. We obtain a weaker result when the right-hand side is a bounded Radon measure. In the case where the dimension is d = 2 or d = 3 and where the coefficients are smooth, we give an error estimate in $$W^{1,q}_0(\Omega)$$ when the right-hand side belongs to Lr(Ω) for some r > 1.

[1]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .

[2]  Ridgway Scott,et al.  Finite element convergence for singular data , 1973 .

[3]  A. Dall'Aglio Approximated solutions of equations withL1 data. Application to theH-convergence of quasi-linear parabolic equations , 1996 .

[4]  G. D. Maso,et al.  Definition and existence of renormalized solutions of elliptic equations with general measure data , 1997 .

[5]  T. Gallouët,et al.  Non-linear elliptic and parabolic equations involving measure data , 1989 .

[6]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[7]  J. Vázquez,et al.  An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 1995 .

[8]  James Serrin,et al.  Pathological solutions of elliptic differential equations , 1964 .

[9]  Luis A. Caffarelli,et al.  Regularity results for discrete solutions of second order elliptic problems in the finite element method , 1986 .

[10]  Thierry Gallouët,et al.  Convergence of linear finite elements for diffusion equations with measure data , 2004 .

[11]  Philippe Bénilan,et al.  Une remarque sur l'unicité des solutions pour l'opérateur de Serrin , 1997 .

[12]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[13]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[14]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[15]  Todd F. Dupont,et al.  Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..

[16]  François Murat,et al.  SOLUCIONES RENORMALIZADAS DE EDP ELIPTICAS NO LINEALES , 2004 .

[17]  T. Gallouët,et al.  Nonlinear Elliptic Equations with Right Hand Side Measures , 1992 .

[18]  J. Vázquez,et al.  An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 2018 .

[19]  Thierry Gallouët,et al.  A Finite Volume Scheme for a Noncoercive Elliptic Equation with Measure Data , 2003, SIAM J. Numer. Anal..

[20]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[21]  Stéphane Clain FINITE ELEMENT APPROXIMATIONS FOR THE LAPLACE OPERATOR WITH A RIGHT-HAND SIDE MEASURE , 1996 .