Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations

Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas template completely; they are often spatially constrained due to the physical limitations of MR sequence settings, the inter-individual variability in brain shape, etc. When using a parcellation template, many regions are not completely covered by actual data. This paper addresses the issue of the area coverage required in real data in order to reliably estimate the representative signal and the influence of this kind of data loss on network analysis metrics. We demonstrate this issue on four datasets using four different widely used parcellation templates. We used two erosion approaches to simulate data loss on the whole-brain level and the ROI-specific level. Our results show that changes in ROI coverage have a systematic influence on network measures. Based on the results of our analysis, we recommend controlling the ROI coverage and retaining at least 60% of the area in order to ensure at least 80% of explained variance of the original signal.

[1]  Edward T. Bullmore,et al.  Whole-brain anatomical networks: Does the choice of nodes matter? , 2010, NeuroImage.

[2]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[3]  J. Pekar,et al.  A method for making group inferences from functional MRI data using independent component analysis , 2001, Human brain mapping.

[4]  Vince D. Calhoun,et al.  A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data , 2009, NeuroImage.

[5]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[6]  Luke J. Chang,et al.  Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. , 2013, Cerebral cortex.

[7]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[8]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[9]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[10]  Kevin Murphy,et al.  Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure , 2015, NeuroImage.

[11]  G. Maddala Limited-dependent and qualitative variables in econometrics: Introduction , 1983 .

[12]  M. Mikl,et al.  Sensitivity of PPI analysis to differences in noise reduction strategies , 2015, Journal of Neuroscience Methods.

[13]  S. Rauch,et al.  Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. , 2005, The American journal of psychiatry.

[14]  John Ashburner,et al.  SPM: A history , 2012, NeuroImage.

[15]  C. Rorden,et al.  Stereotaxic display of brain lesions. , 2000, Behavioural neurology.

[16]  Xenophon Papademetris,et al.  Groupwise whole-brain parcellation from resting-state fMRI data for network node identification , 2013, NeuroImage.

[17]  R. McKelvey,et al.  A statistical model for the analysis of ordinal level dependent variables , 1975 .

[18]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[19]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[20]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[21]  Karl J. Friston,et al.  Ten simple rules for dynamic causal modeling , 2010, NeuroImage.

[22]  N. Makris,et al.  Hypothalamic Abnormalities in Schizophrenia: Sex Effects and Genetic Vulnerability , 2007, Biological Psychiatry.

[23]  Olaf Sporns,et al.  Weight-conserving characterization of complex functional brain networks , 2011, NeuroImage.

[24]  Jean-Baptiste Poline,et al.  Which fMRI clustering gives good brain parcellations? , 2014, Front. Neurosci..

[25]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  Michal Mikl,et al.  Mask_explorer: A tool for exploring brain masks in fMRI group analysis , 2016, Comput. Methods Programs Biomed..

[27]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[28]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[29]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[30]  Michael J. Martinez,et al.  Bias between MNI and Talairach coordinates analyzed using the ICBM‐152 brain template , 2007, Human brain mapping.

[31]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[32]  Annchen R. Knodt,et al.  Impulsivity and the modular organization of resting-state neural networks. , 2013, Cerebral cortex.

[33]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[34]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[35]  Jong H. Yoon,et al.  General and Specific Functional Connectivity Disturbances in First-Episode Schizophrenia During Cognitive Control Performance , 2011, Biological Psychiatry.

[36]  Panayiota Poirazi,et al.  Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses , 2013, Front. Comput. Neurosci..

[37]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[38]  Yong He,et al.  Addressing head motion dependencies for small-world topologies in functional connectomics , 2013, Front. Hum. Neurosci..

[39]  N. Makris,et al.  Decreased volume of left and total anterior insular lobule in schizophrenia , 2006, Schizophrenia Research.

[40]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[41]  Andreas Heinz,et al.  Test–retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures , 2012, NeuroImage.

[42]  Paul J. Laurienti,et al.  Defining nodes in complex brain networks , 2013, Front. Comput. Neurosci..

[43]  Meritxell Bach Cuadra,et al.  A review of atlas-based segmentation for magnetic resonance brain images , 2011, Comput. Methods Programs Biomed..

[44]  John C Gore,et al.  Functional connectivity‐based parcellation of amygdala using self‐organized mapping: A data driven approach , 2014, Human brain mapping.

[45]  F. Windmeijer,et al.  An R-squared measure of goodness of fit for some common nonlinear regression models , 1997 .

[46]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[47]  Daniel S. Margulies,et al.  Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping , 2014, Front. Neurosci..

[48]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[49]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.