Robust Multivariate Regression When There is Heteroscedasticity

Rousseeuw et al. (2004) proposed a robust multivariate regression estimator and reported that its small-sample efficiency can compare favorably to ordinary least squares when the error term is homoscedastic. It is found that in terms of efficiency, their estimator performs well under heteroscedasticity, sometimes strikingly so. Several alternative estimators were considered, some of which also performed well under heteroscedasticity.

[1]  David M. Rocke Robustness properties of S-estimators of multivariate location and shape in high dimension , 1996 .

[2]  Hannu Oja,et al.  Estimates of Regression Coefficients Based on Lift Rank Covariance Matrix , 2003 .

[3]  Hannu Oja,et al.  Estimates of regression coefficients based on the sign covariance matrix , 2002 .

[4]  G. Willems,et al.  Small sample corrections for LTS and MCD , 2002 .

[5]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[6]  H. Theil A Rank-Invariant Method of Linear and Polynomial Regression Analysis , 1992 .

[7]  E. Jacquelin Dietz,et al.  A comparison of robust estimators in simple linear regression , 1987 .

[8]  R. Maronna,et al.  Robust Regression through Robust Covariances. , 1986 .

[9]  J. Friedman,et al.  Predicting Multivariate Responses in Multiple Linear Regression , 1997 .

[10]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[11]  Leon Jay Gleser,et al.  The Importance of Assessing Measurement Reliability in Multivariate Regression , 1992 .

[12]  Victor J. Yohai,et al.  The Behavior of the Stahel-Donoho Robust Multivariate Estimator , 1995 .

[13]  Rand R. Wilcox,et al.  Some small-sample properties of some recently proposed multivariate outlier detection techniques , 2008 .

[14]  Robert F. Ling,et al.  General Classes of Influence Measures for Multivariate Regression , 1992 .

[15]  P. Sen Estimates of the Regression Coefficient Based on Kendall's Tau , 1968 .

[16]  David J. Olive A Resistant Estimator of Multivariate Location and Dispersion , 2003, Comput. Stat. Data Anal..

[17]  Ruben H. Zamar,et al.  Robust Estimates of Location and Dispersion for High-Dimensional Datasets , 2002, Technometrics.

[18]  V. Yohai,et al.  Bias-Robust Estimates of Regression Based on Projections , 1993 .

[19]  Joseph W. McKean,et al.  Rank-based methods for multivariate linear models , 1993 .

[20]  Julia Kastner,et al.  Introduction to Robust Estimation and Hypothesis Testing , 2005 .

[21]  Francisco J. Prieto,et al.  Multivariate Outlier Detection and Robust Covariance Matrix Estimation , 2001, Technometrics.

[22]  David C. Hoaglin,et al.  Summarizing Shape Numerically: The g‐and‐h Distributions , 2011 .

[23]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[24]  Stefan Van Aelst,et al.  MULTIVARIATE REGRESSION S-ESTIMATORS FOR ROBUST ESTIMATION AND INFERENCE , 2005 .

[25]  E. Jacquelin Dietz,et al.  Teaching Regression in a Nonparametric Statistics Course , 1989 .

[26]  Stefan Van Aelst,et al.  Robust Multivariate Regression , 2004, Technometrics.

[27]  V. Yohai,et al.  Robust estimation for the multivariate linear model based on a τ-scale , 2006 .

[28]  C. Croux,et al.  Bounded influence regression using high breakdown scatter matrices , 2003 .

[29]  R. Dennis Cook,et al.  A Model-Free Test for Reduced Rank in Multivariate Regression , 2003 .

[30]  Susan A. Murphy,et al.  The Theil-Sen Estimator with Doubly Censored Data and Applications to Astronomy , 1995 .

[31]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[32]  R. Koenker,et al.  M Estimation of Multivariate Regressions , 1990 .

[33]  José Julio Espina Agulló,et al.  The multivariate least-trimmed squares estimator , 2008 .