Anharmonic Excitations, Time Correlations and Electric Conductivity

We study the influence of anharmonic mechanical excitations of a classical ionic lattice on its electric properties. First, to illustrate salient features, we investigate a simple model, an one-dimensional (1D) system consisting of ten semiclassical electrons embedded in a lattice or a ring with ten ions interacting with exponentially repulsive interactions. The lattice is embedded in a thermal bath. The behavior of the velocity autocorrelation function and the dynamic structure factor of the system are analyzed. We show that in this model the nonlinear excitations lead to long lasting time correlations and, correspondingly, to an increase of the conductivity in a narrow temperature region, where the excitations are supersonic soliton-like. In the second part we consider the quantum statistics of general ion-electron systems with arbitrary dimension and express - following linear response transport theory - the quantum-mechanical conductivity by means of equilibrium time correlation functions. Within the relaxation time approach an expression for the effective collision frequency is derived in Born approximation, which takes into account quantum effects and dynamic effects of the ion motion through the dynamic structure factor of the lattice and the quantum dynamics of the electrons. An evaluation of the influenec of solitons predicts for 1D-lattices a conductivity increase in the temperature region where most thermal solitons are excited, similar as shown in the classical Drude-Lorentz-Kubo framework. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  H. Keller,et al.  Evidence for polaronic supercarriers in the copper oxide superconductors La2–xSrxCuO4 , 1997, Nature.

[2]  N. M. Plakida,et al.  High Temperature Superconductivity , 1990, High Temperature Superconductivity.

[3]  Volker Heine,et al.  The Pseudopotential Concept , 1970 .

[4]  Werner Ebeling,et al.  Dissipative solitons and Complex currents in Active Lattices , 2006, Int. J. Bifurc. Chaos.

[5]  A. Lanzara,et al.  An unusual isotope effect in a high-transition-temperature superconductor , 2004, Nature.

[6]  T. Schneider Classical Statistical Mechanics of Lattice Dynamic Model Systems: Transfer Integral and Molecular-Dynamics Studies , 1983 .

[7]  Werner Ebeling,et al.  Nonlinear Ionic Excitations, Dynamic Bound States, and Nonlinear Currents in a One‐dimensional Plasma , 2005 .

[8]  G. Zwicknagel,et al.  Numerical simulation of the dynamic structure factor of a two-component model plasma , 2003 .

[9]  R. Redmer Physical properties of dense, low-temperature plasmas , 1997 .

[10]  Werner Ebeling,et al.  On the Possibility of Electric conduction Mediated by dissipative solitons , 2005, Int. J. Bifurc. Chaos.

[11]  P. R. Newman,et al.  Nonlinear Transport in Tetrathiafulvalene-Tetracyanoquinodimethane (TTF-TCNQ) at Low Temperatures , 1976 .

[12]  Werner Ebeling,et al.  On soliton-Mediated Fast Electric conduction in a Nonlinear Lattice with Morse Interactions , 2006, Int. J. Bifurc. Chaos.

[13]  C. Kittel Introduction to solid state physics , 1954 .

[14]  N. M. Plakida,et al.  High-Temperature Superconductivity: Experiment and Theory , 1994 .

[15]  D. Hennig,et al.  Charge Transport in Poly(dG)–Poly(dC) and Poly(dA)–Poly(dT) DNA Polymers , 2003, Journal of biological physics.

[16]  Werner Ebeling,et al.  Thermodynamics and phase transitions in dissipative and active Morse chains , 2005 .

[17]  N. Ong,et al.  Anomalous transport properties of a linear-chain metal: NbSe/sub 3/ , 1977 .

[18]  Michel Remoissenet,et al.  Waves Called Solitons: Concepts and Experiments , 1996 .

[19]  Vladimir I. Nekorkin,et al.  Synergetic Phenomena in Active Lattices , 2002 .

[20]  G. Mahan Many-particle physics , 1981 .

[21]  W. Ebeling,et al.  Bifurcations of a semiclassical atom in a periodic field. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[23]  Morikazu Toda,et al.  Nonlinear waves and solitons , 1989 .

[24]  C. Christov,et al.  Dissipative solitons , 1995 .

[25]  H. Buttner,et al.  Dynamic correlations for the Toda lattice in the soliton-gas picture , 1982 .

[26]  V. Morozov,et al.  Statistical mechanics of nonequilibrium processes , 1996 .

[27]  H. Reinholz Dielectric and optical properties of dense plasmas , 2005 .

[28]  K. Müller,et al.  On the oxygen isotope effect and apex anharmonicity in high-Tc cuprates , 1990 .

[29]  Manuel G. Velarde,et al.  Solitons as dissipative structures , 2004 .

[30]  Manuel G. Velarde,et al.  Effect of anharmonicity on charge transport in hydrogen-bonded systems , 2006 .

[31]  Alexander A. Nepomnyashchy,et al.  Interfacial Phenomena and Convection , 2001 .

[32]  Morikazu Toda,et al.  The classical specific heat of the exponential lattice , 1983 .

[33]  Werner Ebeling,et al.  Nonlinear excitations and electric transport in dissipative Morse-Toda lattices , 2006 .