ENCELADUS AS A POTENTIAL OASIS FOR LIFE: Science goals and investigations for future explorations ENCELADUS AS A POTENTIAL OASIS FOR LIFE Core proposing team

[1]  J. Hayes,et al.  Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem , 2009 .

[2]  J. Wahlund,et al.  Dusty plasma in the vicinity of Enceladus , 2011 .

[3]  A. Rubin,et al.  Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes , 2016, Proceedings of the National Academy of Sciences.

[4]  R. Lorenz,et al.  Vital Signs: Seismology of Icy Ocean Worlds. , 2018, Astrobiology.

[5]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[6]  K. Hand,et al.  Astrobiology: Frontier or fiction , 2012, Nature.

[7]  C. Sotin,et al.  The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover , 2013 .

[8]  Bryan J. Travis,et al.  Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .

[9]  M. Dougherty,et al.  Influence of negatively charged plume grains on the structure of Enceladus' Alfvén wings: Hybrid simulations versus Cassini Magnetometer data , 2011 .

[10]  Seeding life on the moons of the outer planets via lithopanspermia. , 2013, Astrobiology.

[11]  S. Ida,et al.  Orbital evolution of Saturn’s mid-sized moons and the tidal heating of Enceladus , 2018, Icarus.

[12]  A. Loeb,et al.  Is Extraterrestrial Life Suppressed on Subsurface Ocean Worlds due to the Paucity of Bioessential Elements? , 2018, The Astronomical Journal.

[13]  L. Iess,et al.  The Interior of Enceladus , 2018 .

[14]  Jaroslav Hron,et al.  Long-term stability of Enceladus’ uneven ice shell , 2019, Icarus.

[15]  M. Russell The Alkaline Solution to the Emergence of Life: Energy, Entropy and Early Evolution , 2007, Acta biotheoretica.

[16]  A. Bertram,et al.  A marine biogenic source of atmospheric ice-nucleating particles , 2015, Nature.

[17]  R. Clark,et al.  Isotopic ratios of Saturn's rings and satellites: Implications for the origin of water and Phoebe , 2019, Icarus.

[18]  C. Porco,et al.  Could It Be Snowing Microbes on Enceladus? Assessing Conditions in Its Plume and Implications for Future Missions , 2017, Astrobiology.

[19]  Gabriel Tobie,et al.  Powering prolonged hydrothermal activity inside Enceladus , 2017 .

[20]  C. Sotin,et al.  Geophysical Investigations of Habitability in Ice‐Covered Ocean Worlds , 2017, 1705.03999.

[21]  F. Postberg,et al.  Science goals and mission concept for the future exploration of Titan and Enceladus , 2014 .

[22]  T. Guillot,et al.  New constraints on Saturn’s interior from Cassini astrometric data , 2015, 1510.05870.

[23]  W. McKinnon The shape of Enceladus as explained by an irregular core: Implications for gravity, libration, and survival of its subsurface ocean , 2013 .

[24]  R. Funase,et al.  Planetary protection on international waters: An onboard protocol for capsule retrieval and biosafety control in sample return mission , 2014 .

[25]  B. Militzer,et al.  Measurement and implications of Saturn’s gravity field and ring mass , 2019, Science.

[26]  William R. Ward,et al.  A common mass scaling for satellite systems of gaseous planets , 2006, Nature.

[27]  T. Lingham‐Soliar,et al.  Origin and evolution , 2014 .

[28]  C. McKay,et al.  Abiotic and Biotic Formation of Amino Acids in the Enceladus Ocean. , 2017, Astrobiology.

[29]  F. Postberg,et al.  Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space. , 2019, Rapid communications in mass spectrometry : RCM.

[30]  R. Beebe Jupiter: The Planet, Satellites and Magnetosphere , 2005 .

[31]  D. Deamer,et al.  Hydrothermal Conditions and the Origin of Cellular Life. , 2015, Astrobiology.

[32]  Christopher P. McKay,et al.  Enceladus: An Active Cryovolcanic Satellite , 2009 .

[33]  H. T. Smith,et al.  Enceladus plume variability and the neutral gas densities in Saturn's magnetosphere , 2010 .

[34]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[35]  L. Esposito,et al.  Monte Carlo simulations of the water vapor plumes on Enceladus , 2007 .

[36]  Origin and Evolution of Saturn's Ring System , 2009, 0912.3017.

[37]  Jens Romstedt,et al.  MIDAS: Lessons learned from the first spaceborne atomic force microscope , 2016 .

[38]  Alec Wilson,et al.  Can libration maintain Enceladus's ocean? , 2018, Earth and Planetary Science Letters.

[39]  Chris McKay,et al.  What Is Life—and How Do We Search for It in Other Worlds? , 2004, PLoS biology.

[40]  R. Greenberg,et al.  Eruptions arising from tidally controlled periodic openings of rifts on Enceladus , 2007, Nature.

[41]  C. Porco,et al.  TIDALLY MODULATED ERUPTIONS ON ENCELADUS: CASSINI ISS OBSERVATIONS AND MODELS , 2014 .

[42]  J. Dubinski A recent origin for Saturn’s rings from the collisional disruption of an icy moon , 2017, Icarus.

[43]  A. Brack,et al.  A Hydrothermal-Sedimentary Context for the Origin of Life , 2018, Astrobiology.

[44]  C. Russell,et al.  Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations , 2011 .

[45]  M. Golombek,et al.  Thrust faulting as the origin of dorsa in the trailing hemisphere of Enceladus , 2010, Icarus.

[46]  M. Dougherty,et al.  Plasma regions, charged dust and field-aligned currents near Enceladus , 2015 .

[47]  U. Beckmann,et al.  How the Enceladus dust plume feeds Saturn’s E ring , 2010 .

[48]  Fritz M. Neubauer,et al.  Induced Magnetic Fields in Solar System Bodies , 2010 .

[49]  Tim Tinsley,et al.  Alternative Radioisotopes for Heat and Power Sources , 2011 .

[50]  C. Sotin,et al.  Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements , 2007 .

[51]  F. Postberg,et al.  Plume and Surface Composition of Enceladus , 2018 .

[52]  Deborah S. Kelley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N , 2001, Nature.

[53]  C. Glein,et al.  How Adsorption Affects the Gas–Ice Partitioning of Organics Erupted from Enceladus , 2019, The Astrophysical Journal.

[54]  A. Ingersoll,et al.  Decadal timescale variability of the Enceladus plumes inferred from Cassini images , 2017 .

[55]  F. Postberg,et al.  Enceladus Life Finder: The search for life in a habitable Moon , 2015, 2016 IEEE Aerospace Conference.

[56]  R. T. Pappalardo,et al.  Shear heating as the origin of the plumes and heat flux on Enceladus , 2007, Nature.

[57]  M. K. Dougherty,et al.  Discontinuities in the magnetic field near Enceladus , 2014 .

[58]  Gabriel Tobie,et al.  Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data , 2016 .

[59]  S. Kempf,et al.  Surface deposition of the Enceladus plume and the zenith angle of emissions , 2018, Icarus.

[60]  M. Dougherty,et al.  The Variable Rotation Period of the Inner Region of Saturn's Plasma Disk , 2007, Science.

[61]  R. H. Brown,et al.  Close Cassini flybys of Saturn’s ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus , 2019, Science.

[62]  J. Lebreton,et al.  Orbitrap mass analyser for in situ characterisation of planetary environments: Performance evaluation of a laboratory prototype , 2016 .

[63]  F. Postberg,et al.  Macromolecular organic compounds from the depths of Enceladus , 2018, Nature.

[64]  R. Pappalardo,et al.  Pit chains on Enceladus signal the recent tectonic dissection of the ancient cratered terrains , 2017 .

[65]  Robert L. Tokar,et al.  Fine jet structure of electrically charged grains in Enceladus' plume , 2009 .

[66]  T. Nissen‐Meyer,et al.  Seismic Wave Propagation in Icy Ocean Worlds , 2017, 1705.03500.

[67]  R. Clark,et al.  Deciphering sub-micron ice particles on Enceladus surface , 2017 .

[68]  J. Sutherland,et al.  Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions , 2009, Nature.

[69]  F. Postberg,et al.  Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains , 2019, Monthly Notices of the Royal Astronomical Society.

[70]  C. Hansen,et al.  Investigation of diurnal variability of water vapor in Enceladus' plume by the Cassini ultraviolet imaging spectrograph , 2017 .

[71]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[72]  Sascha Kempf,et al.  Ongoing hydrothermal activities within Enceladus , 2015, Nature.

[73]  S. Vance,et al.  Oceanography of an Ice-Covered Moon , 2009 .

[74]  Barry H. Mauk,et al.  The auroral footprint of Enceladus on Saturn , 2011, Nature.

[75]  T. Gautier,et al.  Development of HPLC-Orbitrap method for identification of N-bearing molecules in complex organic material relevant to planetary environments , 2016, 1605.03022.

[76]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[77]  Giant impacts in the Saturnian system: A possible origin of diversity in the inner mid-sized satellites , 2011, 1106.3827.

[78]  Christoph Adami,et al.  Monomer Abundance Distribution Patterns as a Universal Biosignature: Examples from Terrestrial and Digital Life , 2011, Journal of Molecular Evolution.

[79]  E. Natasha Stavros,et al.  THEO concept mission: Testing the Habitability of Enceladus’s Ocean , 2016, 1605.00579.

[80]  Nigel P. Bannister,et al.  A conceptual spacecraft radioisotope thermoelectric and heating unit (RTHU) , 2012 .

[81]  F. Nimmo,et al.  Interior thermal state of Enceladus inferred from the viscoelastic state of the ice shell , 2017 .

[82]  Jaroslav Hron,et al.  Tidal dissipation in Enceladus' uneven, fractured ice shell , 2019, Icarus.

[83]  P. Schenk,et al.  The Snows of Enceladus , 2011 .

[84]  P. Meier,et al.  Physical Processes in the Dusty Plasma of the Enceladus Plume , 2018 .

[85]  Robert T. Pappalardo,et al.  Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations , 2008 .

[86]  R. Bhartia,et al.  The drive to life on wet and icy worlds. , 2014, Astrobiology.

[87]  P. Bland,et al.  Giant convecting mud balls of the early solar system , 2017, Science Advances.

[88]  R. Lorenz,et al.  Expected Seismicity and the Seismic Noise Environment of Europa , 2017, 1705.03424.

[89]  R. Pappalardo,et al.  Structural mapping of Enceladus and implications for formation of tectonized regions , 2015 .

[90]  K. Ohtsuki,et al.  Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object , 2016, 1609.02396.

[91]  J. Baross,et al.  The pH of Enceladus’ ocean , 2015, 1502.01946.

[92]  M. Dougherty,et al.  Auroral hiss, electron beams and standing Alfvén wave currents near Saturn's moon Enceladus , 2011 .

[93]  Emily E. Berkson,et al.  Curtain eruptions from Enceladus’ south-polar terrain , 2015, Nature.

[94]  J. Lunine,et al.  Future Exploration of Enceladus and Other Saturnian Moons , 2018 .

[95]  R. McNutt,et al.  Cassini INMS measurements of Enceladus plume density , 2015 .

[96]  R. Pappalardo,et al.  Diapir-induced reorientation of Saturn's moon Enceladus , 2006, Nature.

[97]  G. Tobie,et al.  Viscoelastic relaxation of Enceladus’s ice shell , 2017 .

[98]  F. Nimmo,et al.  The thermal and orbital evolution of Enceladus : observational constraints and models , 2017 .

[99]  D. Goldstein,et al.  Enceladus Plume Dynamics , 2018 .

[100]  R. Srama,et al.  A salt-water reservoir as the source of a compositionally stratified plume on Enceladus , 2011, Nature.

[101]  M. Neveu,et al.  Evolution of Saturn’s Mid-Sized Moons , 2019, Nature Astronomy.

[102]  A. Trinh,et al.  The diurnal libration and interior structure of Enceladus , 2016 .

[103]  N. Brilliantov,et al.  Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures , 2008, Nature.

[104]  J. Pearl,et al.  High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data , 2011 .

[105]  R. Srama,et al.  Energetic electron measurements near Enceladus by Cassini during 2005-2015 , 2017 .

[106]  W. S. Lewis,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[107]  R. H. Brown,et al.  An observed correlation between plume activity and tidal stresses on Enceladus , 2013, Nature.

[108]  Joana C. Xavier,et al.  Serpentinization: Connecting Geochemistry, Ancient Metabolism and Industrial Hydrogenation , 2018, Life.

[109]  R. Pappalardo,et al.  Gravitational spreading, bookshelf faulting, and tectonic evolution of the South Polar Terrain of Saturn’s moon Enceladus , 2015 .

[110]  M. Ćuk,et al.  DYNAMICAL EVIDENCE FOR A LATE FORMATION OF SATURN’S MOONS , 2016, 1603.07071.

[111]  F. Neubauer,et al.  Hemisphere coupling in Enceladus' asymmetric plasma interaction , 2007 .

[112]  Carolyn C. Porco,et al.  HOW THE GEYSERS, TIDAL STRESSES, AND THERMAL EMISSION ACROSS THE SOUTH POLAR TERRAIN OF ENCELADUS ARE RELATED , 2014 .

[113]  A. Rivoldini,et al.  Enceladus's and Dione's floating ice shells supported by minimum stress isostasy , 2016, 1610.00548.

[114]  H. Hussmann,et al.  Non-steady state tidal heating of Enceladus , 2014 .

[115]  Formation of Regular Satellites from Ancient Massive Rings in the Solar System , 2012, Science.

[116]  D. Goldstein,et al.  Enceladus Plume Dynamics: From Surface to Space , 2018 .

[117]  C. Sotin,et al.  Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites , 2010 .

[118]  W. Martin,et al.  On the origin of biochemistry at an alkaline hydrothermal vent , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[119]  Manuel Bedrossian,et al.  Digital Holographic Microscopy, a Method for Detection of Microorganisms in Plume Samples from Enceladus and Other Icy Worlds , 2017, Astrobiology.

[120]  Manuel Bedrossian,et al.  A Submersible, Off-Axis Holographic Microscope for Detection of Microbial Motility and Morphology in Aqueous and Icy Environments , 2016, PloS one.

[121]  S. Ida The origin of Saturn's rings and moons , 2019, Science.

[122]  W. McKinnon Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity , 2015 .

[123]  W. Henning,et al.  Tidal Volcanism on Enceladus , 2015 .

[124]  C. McKay,et al.  Enceladus Astrobiology, Habitability, and the Origin of Life , 2018 .

[125]  J. Burns,et al.  True polar wander of Enceladus from topographic data , 2017, 1710.04594.

[126]  J. Burns,et al.  Close-range remote sensing of Saturn’s rings during Cassini’s ring-grazing orbits and Grand Finale , 2019, Science.

[127]  Gary Ruvkun,et al.  Sequencing nothing: Exploring failure modes of nanopore sensing and implications for life detection. , 2018, Life sciences in space research.

[128]  P. Helfenstein,et al.  ENCELADUS’ GEYSERS: RELATION TO GEOLOGICAL FEATURES , 2015 .

[129]  P. Schenk,et al.  Crater modification and geologic activity in Enceladus' heavily cratered plains: Evidence from the impact crater distribution , 2009 .

[130]  S. Charnoz,et al.  Formation of the Cassini Division – II. Possible histories of Mimas and Enceladus , 2019, Monthly Notices of the Royal Astronomical Society.

[131]  E. Quataert,et al.  Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems , 2016, 1601.05804.

[132]  F. Nimmo,et al.  Recent orbital evolution and the internal structures of Enceladus and Dione , 2009 .

[133]  William H. Grover,et al.  Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[134]  R. Jaumann,et al.  Composition and Physical Properties of Enceladus' Surface , 2006, Science.

[135]  Late-stage impacts and the orbital and thermal evolution of Tethys , 2012 .

[136]  E. Grün,et al.  The E-ring in the vicinity of Enceladus: II. Probing the moon's interior—The composition of E-ring particles , 2008 .

[137]  S. Charnoz,et al.  Are Saturn’s rings actually young? , 2019, Nature Astronomy.

[138]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[139]  Gabriel Tobie,et al.  Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus , 2008 .

[140]  L. White,et al.  Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds. , 2017, Astrobiology.

[141]  R. Clark,et al.  Spatially resolved near infrared observations of Enceladus’ tiger stripe eruptions from Cassini VIMS , 2017 .

[142]  C. Porco,et al.  Timing of water plume eruptions on Enceladus explained by interior viscosity structure , 2015 .

[143]  J. Lunine,et al.  Origins of Enceladus: A Compositional Perspective , 2018 .

[144]  C. Hansen,et al.  Spatial variations in the dust-to-gas ratio of Enceladus' plume , 2018, 1801.01567.

[145]  Tim Tinsley,et al.  Progress and future roadmap on 241Am production for use in Radioisotope Power Systems , 2019, 2019 IEEE Aerospace Conference.

[146]  Robert A. West,et al.  The composition and structure of the Enceladus plume , 2011 .

[147]  M. Segura,et al.  Enceladus Heat Flow from High Spatial Resolution Thermal Emission Observations , 2013 .

[148]  C. Sotin,et al.  Enceladus Distributed Geophysical Exploration , 2019 .

[149]  A. Ingersoll,et al.  Plume Origins and Plumbing: From Ocean to Surface , 2018 .

[150]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[151]  F. Postberg,et al.  Stream particles as the probe of the dust‐plasma‐magnetosphere interaction at Saturn , 2010 .

[152]  P. Schenk,et al.  Enceladus' extreme heat flux as revealed by its relaxed craters , 2012 .

[153]  A. Anbar,et al.  LIFE: Life Investigation For Enceladus A Sample Return Mission Concept in Search for Evidence of Life. , 2012, Astrobiology.

[154]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[155]  N. Lane,et al.  The Origin of Life in Alkaline Hydrothermal Vents. , 2016, Astrobiology.

[156]  R. H. Brown,et al.  SPECTRAL OBSERVATIONS OF THE ENCELADUS PLUME WITH CASSINI-VIMS , 2009 .

[157]  R. Stocker,et al.  Microbial Morphology and Motility as Biosignatures for Outer Planet Missions , 2016, Astrobiology.

[158]  B. Buratti,et al.  Enceladus as an Active World: History and Discovery , 2018 .

[159]  Barbara Sherwood Lollar,et al.  Is Mars alive , 2006 .

[160]  P. Helfenstein,et al.  Tidal Control of Jet Eruptions Observed by Cassini ISS , 2012 .

[161]  R. G. Alexander Long-term stability , 2020, BDJ.

[162]  C. Sotin,et al.  Thermally anomalous features in the subsurface of Enceladus’s south polar terrain , 2017, Nature Astronomy.

[163]  Jaroslav Hron,et al.  Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness , 2017, Astrobiology.

[164]  M. Showalter,et al.  Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites , 2011 .

[165]  Joseph A. Burns,et al.  Orbital Evolution of , 1978 .

[166]  C. Sotin,et al.  Explorer of Enceladus and Titan (E2T): Investigating ocean worlds' evolution and habitability in the solar system , 2017, Planetary and Space Science.

[167]  C. Mckay Requirements and limits for life in the context of exoplanets , 2014, Proceedings of the National Academy of Sciences.

[168]  A. Butterworth,et al.  Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer , 2017, Astrobiology.

[169]  S. Charnoz,et al.  STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY , 2012, 1204.0895.

[170]  C. Russell,et al.  Identification of a Dynamic Atmosphere at Enceladus with the Cassini Magnetometer , 2006, Science.

[171]  B. Marty,et al.  Nitrogen isotope variations in the Solar System , 2015 .

[172]  Robert L. Tokar,et al.  Modification of the plasma in the near‐vicinity of Enceladus by the enveloping dust , 2010 .

[173]  W. Ip,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[174]  Manuel Bedrossian,et al.  Imaging technologies and strategies for detection of extant extraterrestrial microorganisms , 2018 .

[175]  M. Beuthe Enceladus’s crust as a non-uniform thin shell: I tidal deformations , 2017, 1711.08236.

[176]  M. Zolotov Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessments in closed systems , 2012 .

[177]  R. Pappalardo,et al.  Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes , 2008 .

[178]  R. Clark,et al.  Enceladus and the Icy Moons of Saturn , 2018 .

[179]  P. Meier,et al.  Ion densities and magnetic signatures of dust pickup at Enceladus , 2014 .

[180]  F. Postberg,et al.  High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus , 2015, Nature Communications.

[181]  R. Canup,et al.  Accretion of Saturn’s Inner Mid-sized Moons from a Massive Primordial Ice Ring , 2017, The Astrophysical journal.

[182]  G. Tobie Planetary science: Enceladus' hot springs , 2015, Nature.

[183]  P. Thomas,et al.  Geophysical implications of the long‐wavelength topography of the Saturnian satellites , 2011 .

[184]  D. Goldstein,et al.  On understanding the physics of the Enceladus south polar plume via numerical simulation , 2015 .

[185]  Bernd Dachwald,et al.  A lander mission to probe subglacial water on Saturn's moon Enceladus for life , 2015 .

[186]  M. Zolotov An oceanic composition on early and today's Enceladus , 2007 .

[187]  Javier Gómez-Elvira,et al.  SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. , 2011, Astrobiology.

[188]  E. Roussos,et al.  The interaction between Saturn’s moons and their plasma environments , 2015 .

[189]  Steven B. Charnley,et al.  The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .

[190]  G. Ruvkun,et al.  Nanopore sequencing at Mars, Europa, and microgravity conditions. , 2020, NPJ microgravity.

[191]  M. Dougherty,et al.  Influence of negatively charged plume grains and hemisphere coupling currents on the structure of Enceladus' Alfvén wings: Analytical modeling of Cassini magnetometer observations , 2011 .