Simulating water and smoke with an octree data structure

We present a method for simulating water and smoke on an unrestricted octree data structure exploiting mesh refinement techniques to capture the small scale visual detail. We propose a new technique for discretizing the Poisson equation on this octree grid. The resulting linear system is symmetric positive definite enabling the use of fast solution methods such as preconditioned conjugate gradients, whereas the standard approximation to the Poisson equation on an octree grid results in a non-symmetric linear system which is more computationally challenging to invert. The semi-Lagrangian characteristic tracing technique is used to advect the velocity, smoke density, and even the level set making implementation on an octree straightforward. In the case of smoke, we have multiple refinement criteria including object boundaries, optical depth, and vorticity concentration. In the case of water, we refine near the interface as determined by the zero isocontour of the level set function.

[1]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[2]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[3]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[4]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[5]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[6]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[7]  Jim X. Chen,et al.  Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using Navier-Stokes Equations , 1995, CVGIP Graph. Model. Image Process..

[8]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[9]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[11]  Dimitris N. Metaxas,et al.  Controlling fluid animation , 1997, Proceedings Computer Graphics International.

[12]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[13]  Marcus S. Day,et al.  Embedded Boundary Algorithms for Solving the Poisson Equation on Complex Domains , 1998 .

[14]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[15]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[16]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[17]  J. Strain Fast Tree-Based Redistancing for Level Set Computations , 1999 .

[18]  J. Strain Tree Methods for Moving Interfaces , 1999 .

[19]  Rüdiger Westermann,et al.  Real-time exploration of regular volume data by adaptive reconstruction of isosurfaces , 1999, The Visual Computer.

[20]  Jessica K. Hodgins,et al.  Animating explosions , 2000, SIGGRAPH.

[21]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[22]  J. Strain A Fast Modular Semi-Lagrangian Method for Moving Interfaces , 2000 .

[23]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[24]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[25]  Ronald N. Perry,et al.  Kizamu: a system for sculpting digital characters , 2001, SIGGRAPH.

[26]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[27]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[28]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[29]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[30]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[31]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[32]  Yoshinori Dobashi,et al.  Simulation of Cumuliform Clouds Based on Computational Fluid Dynamics , 2002, Eurographics.

[33]  A. B. Strong,et al.  A Fully Conservative Second-Order Finite Difference Scheme for Incompressible Flow on Nonuniform Grids , 2002 .

[34]  Duc Quang Nguyen,et al.  Smoke simulation for large scale phenomena , 2003, ACM Trans. Graph..

[35]  James F. O'Brien,et al.  Animating suspended particle explosions , 2003, ACM Trans. Graph..

[36]  Multi-level partition of unity implicits , 2005, ACM Trans. Graph..

[37]  Vassili S. Sochnikov,et al.  Level set calculations of the evolution of boundaries on a dynamically adaptive grid , 2003 .

[38]  Mathieu Desbrun,et al.  Progressive encoding of complex isosurfaces , 2003, ACM Trans. Graph..

[39]  Ross T. Whitaker,et al.  Particle‐Based Simulation of Fluids , 2003, Comput. Graph. Forum.

[40]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[41]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[42]  Takahiro Saito,et al.  Realistic Animation of Fluid with Splash and Foam , 2003, Comput. Graph. Forum.

[43]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[44]  Adrien Treuille,et al.  Keyframe control of smoke simulations , 2003, ACM Trans. Graph..

[45]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[46]  Chang-Hun Kim,et al.  Animation of Bubbles in Liquid , 2003, Comput. Graph. Forum.

[47]  M. Sussman A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles , 2003 .

[48]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[49]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .