Protocol for Counterfactually Transporting an Unknown Qubit

Quantum teleportation circumvents the uncertainty principle using dual channels: a quantum one consisting of previously-shared entanglement, and a classical one, together allowing the disembodied transport of an unknown quantum state over distance. It has recently been shown that a classical bit can be counterfactually communicated between two parties in empty space, “Alice” and “Bob”. Here, by using our “dual” version of the chained quantum Zeno effect to achieve a counterfactual CNOT gate, we propose a protocol for transporting an unknown qubit counterfactually, that is without any physical particles travelling between Alice and Bob—no classical channel and no previously-shared entanglement.

[1]  Asher Peres,et al.  Zeno paradox in quantum theory , 1980 .

[2]  A. Zeilinger,et al.  High-efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect , 1999, quant-ph/9909083.

[3]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[4]  Hatim Salih,et al.  Protocol for direct counterfactual quantum communication. , 2012, Physical review letters.

[5]  Zhu Cao,et al.  Direct counterfactual communication with single photons , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[6]  Serge Haroche,et al.  Controlling photons in a box and exploring the quantum to classical boundary , 2013, Angewandte Chemie.

[7]  Herzog,et al.  Interaction-free measurement. , 1995, Physical review letters.

[8]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[9]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[10]  T. Noh Counterfactual quantum cryptography. , 2008, Physical review letters.

[11]  David J. Wineland Superposition, Entanglement, and Raising Schrödinger's Cat , 2013 .

[12]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[13]  Lev Vaidman,et al.  Comment on “Protocol for Direct Counterfactual Quantum Communication” , 2013, 1304.6689.

[14]  R. Dicke,et al.  Interaction‐free quantum measurements: A paradox? , 1981 .

[15]  Surya P. Tewari,et al.  An all-optical realization of the quantum Zeno effect , 1994 .

[16]  Hatim Salih,et al.  Tripartite counterfactual quantum cryptography , 2014, 1404.5540.

[17]  Nicolas Gisin Quantum cloning without signaling , 1998 .

[18]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[19]  D. Wineland Nobel Lecture: Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[20]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[21]  N. Mermin From classical state swapping to quantum teleportation , 2001, quant-ph/0105117.

[22]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[23]  Nicholas A. Peters,et al.  Counterfactual quantum computation through quantum interrogation , 2006, Nature.

[24]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[25]  Jacob F. Sherson,et al.  Quantum teleportation between light and matter , 2006, Nature.

[26]  L. Vaidman,et al.  Quantum mechanical interaction-free measurements , 1993, hep-th/9305002.

[27]  S. Haroche Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary , 2013 .

[28]  J. Raimond,et al.  Seeing a single photon without destroying it , 1999, Nature.

[29]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[30]  N. David Mermin Copenhagen computation: How I learned to stop worrying and love Bohr , 2004, IBM J. Res. Dev..