Porous biomimetic membranes: fabrication, properties and future applications.

A cell membrane is a flexible lipid bilayer with sophisticated functions which dominate the exchange of material, energy and information between the outside and the inside of the cell. In order to understand and imitate these structures and functions, scientists had already developed a variety of mimic membranes which are alike in form based on lipid bilayer and organic channel-molecules. With the rise of nanotechnology, a large number of synthetic nano-devices are widely used to construct porous biomimetic membranes which are alike in spirit instead of the conventional lipid bilayer membranes. This perspective will first introduce several typical methods to fabricate porous biomimetic membranes, and then discuss the "smart" properties and future applications of these membranes in materials transport, energy transformation and signal transduction aspects.

[1]  Shiroh Futaki,et al.  Transmission of extramembrane conformational change into current: construction of metal-gated ion channel. , 2006, Journal of the American Chemical Society.

[2]  C. R. Martin,et al.  Ion channel mimetic micropore and nanotube membrane sensors. , 2002, Analytical chemistry.

[3]  S. Bauer,et al.  Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. , 2009, Journal of the American Chemical Society.

[4]  Scott L Cockroft,et al.  A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. , 2008, Journal of the American Chemical Society.

[5]  P. Milani,et al.  Biocompatibility of cluster-assembled nanostructured TiO2 with primary and cancer cells. , 2006, Biomaterials.

[6]  C. Martin,et al.  Highly sensitive methods for electroanalytical chemistry based on nanotubule membranes. , 1999, Analytical chemistry.

[7]  Mathias Winterhalter,et al.  A nanocompartment system (Synthosome) designed for biotechnological applications. , 2006, Journal of biotechnology.

[8]  H. Tien,et al.  Self-assembled bilayer lipid membranes: from mimicking biomembranes to practical applications☆ , 1997 .

[9]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[10]  Zuzanna Siwy,et al.  DNA-nanotube artificial ion channels. , 2004, Journal of the American Chemical Society.

[11]  J. Lehn,et al.  Towards Artificial Ion Channels: Transport of Alkali Metal Ions across Liposomal Membranes by “Bouquet” Molecules , 1992 .

[12]  Xu Hou,et al.  A biomimetic asymmetric responsive single nanochannel. , 2010, Journal of the American Chemical Society.

[13]  Yufeng Zheng,et al.  In Vivo Biocompatibility Studies of Nano TiO2 Materials , 2009 .

[14]  S. Howorka,et al.  Chemically labeled nucleotides and oligonucleotides encode DNA for sensing with nanopores. , 2009, Journal of the American Chemical Society.

[15]  Molecular design and synthesis of artificial ion channels based on cyclic peptides containing unnatural amino acids. , 2001, The Journal of organic chemistry.

[16]  C. Brinker,et al.  An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure. , 2010, Nature nanotechnology.

[17]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[18]  M. Sokabe,et al.  Artificial non-peptide single ion channels , 1992 .

[19]  Y. Korchev,et al.  Rapid switching of ion current in narrow pores: implications for biological ion channels , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  Xu Hou,et al.  A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. , 2009, Journal of the American Chemical Society.

[21]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[22]  Weihong Tan,et al.  DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity , 2004, Science.

[23]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[24]  Lei Jiang,et al.  Energy Harvesting with Single‐Ion‐Selective Nanopores: A Concentration‐Gradient‐Driven Nanofluidic Power Source , 2010 .

[25]  Jeffery T. Davis,et al.  Toward Artificial Ion Channels: A Lipophilic G-Quadruplex , 2000 .

[26]  W. DeGrado,et al.  Synthetic amphiphilic peptide models for protein ion channels. , 1988, Science.

[27]  C. Martin,et al.  pH-switchable, ion-permselective gold nanotubule membrane based on chemisorbed cysteine. , 2001, Analytical chemistry.

[28]  I. Tabushi,et al.  A,B,D,F-tetrasubstituted β-cyclodextrin as artificial channel compound , 1982 .

[29]  K. Healy Nanopore-based single-molecule DNA analysis. , 2007, Nanomedicine.

[30]  David Stoddart,et al.  Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore. , 2010, Nano letters.

[31]  Thomas H Segall-Shapiro,et al.  Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome , 2010, Science.

[32]  Jin Zhai,et al.  Bioinspired Smart Gating of Nanochannels Toward Photoelectric‐Conversion Systems , 2010, Advanced materials.

[33]  Jiwook Shim,et al.  Single molecule sensing by nanopores and nanopore devices. , 2010, The Analyst.

[34]  Dongsheng Xu,et al.  Large-Scale, Noncurling, and Free-Standing Crystallized TiO2 Nanotube Arrays for Dye-Sensitized Solar Cells , 2009 .

[35]  Charles R. Martin,et al.  Nanotubule-Based Molecular-Filtration Membranes , 1997 .

[36]  Susan Daniel,et al.  Single ion-channel recordings using glass nanopore membranes. , 2007, Journal of the American Chemical Society.

[37]  H. Bayley,et al.  A functional protein pore with a “retro” transmembrane domain , 1999, Protein science : a publication of the Protein Society.

[38]  A. Dolphin,et al.  Voltage‐dependent binding and calcium channel current inhibition by an anti‐α1D subunit antibody in rat dorsal root ganglion neurones and guinea‐pig myocytes , 1997, The Journal of physiology.

[39]  S. Iqbal,et al.  A mesoscale model of DNA interaction with functionalized nanopore , 2009 .

[40]  M. Ghadiri,et al.  Self-Assembling Cyclic β3-Peptide Nanotubes as Artificial Transmembrane Ion Channels , 1998 .

[41]  B. Sumpter,et al.  Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors , 2010 .

[42]  J. Leburton,et al.  p-n Semiconductor membrane for electrically tunable ion current rectification and filtering. , 2007, Nano letters.

[43]  Dirk Trauner,et al.  Engineering light-gated ion channels. , 2006, Biochemistry.

[44]  E. Wang,et al.  Ion channel behavior of amphotericin B in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes investigated by electrochemistry and spectroscopy. , 2002, Biophysical journal.

[45]  J. Wang,et al.  Rh(II)-catalyzed Sommelet-Hauser rearrangement. , 2008, Organic letters.

[46]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[47]  M. Ghadiri,et al.  Artificial transmembrane ion channels from self-assembling peptide nanotubes , 1994, Nature.

[48]  T. Gaborski,et al.  Charge- and size-based separation of macromolecules using ultrathin silicon membranes , 2007, Nature.

[49]  Artificial ion channels , 2003 .

[50]  C. R. Martin,et al.  Composite membranes from photochemical synthesis of ultrathin polymer films , 1991, Nature.

[51]  Xu Hou,et al.  Gating of single synthetic nanopores by proton-driven DNA molecular motors. , 2008, Journal of the American Chemical Society.

[52]  X. Zhou,et al.  A VOLTAGE-GATED ION CHANNEL BASED ON A BIS-MACROCYCLIC BOLAAMPHIPHILE , 1998 .

[53]  Sung-Wook Nam,et al.  Ionic field effect transistors with sub-10 nm multiple nanopores. , 2009, Nano letters.

[54]  Jin Zhai,et al.  Bio‐inspired Photoelectric Conversion Based on Smart‐Gating Nanochannels , 2010 .

[55]  Chun-hua Lu,et al.  Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. , 2011, Journal of the American Chemical Society.

[56]  S. Smirnov,et al.  Label-free DNA sensor based on surface charge modulated ionic conductance. , 2009, ACS nano.

[57]  Róbert E. Gyurcsányi,et al.  Chemically-modified nanopores for sensing , 2008 .

[58]  G Andrew Woolley,et al.  Modeling ion channel regulation. , 2003, Current opinion in chemical biology.

[59]  David W. McComb,et al.  DNA Tunneling Detector Embedded in a Nanopore , 2010, Nano letters.

[60]  Mary S. Gin,et al.  A light-gated synthetic ion channel. , 2008, Organic letters.

[61]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[62]  S. Matile,et al.  Artificial beta-barrels. , 2008, Accounts of chemical research.

[63]  T. Hianik,et al.  Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays , 2009 .

[64]  X. Gong,et al.  A controllable molecular sieve for Na+ and K+ ions. , 2010, Journal of the American Chemical Society.

[65]  U. Bockelmann,et al.  DNA translocation and unzipping through a nanopore: some geometrical effects. , 2010, Biophysical journal.

[66]  R. Kawano,et al.  Quartz nanopore membranes for suspended bilayer ion channel recordings. , 2010, Analytical Chemistry.

[67]  Zuzanna Siwy,et al.  Protein biosensors based on biofunctionalized conical gold nanotubes. , 2005, Journal of the American Chemical Society.

[68]  Xu Hou,et al.  Learning from nature: building bio-inspired smart nanochannels. , 2009, ACS nano.

[69]  P. Knowles,et al.  Suspended Planar Phospholipid Bilayers on Micromachined Supports , 2000 .

[70]  Chad A. Mirkin,et al.  Nanobiotechnology :concepts, applications and perspectives , 2005 .

[71]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[72]  R. Cao,et al.  Artificial, switchable K+-gated ion channels based on flow-through titania-nanotube arrays. , 2010, Physical chemistry chemical physics : PCCP.

[73]  D. Wyss,et al.  Template-Assembled Synthetic Proteins with 4-Helix-Bundle Topology - Total Chemical Synthesis and Conformational Studies , 1992 .

[74]  Andreas Janshoff,et al.  Transport across artificial membranes–an analytical perspective , 2006, Analytical and bioanalytical chemistry.

[75]  E. Gouaux α-Hemolysin fromStaphylococcus aureus:An Archetype of β-Barrel, Channel-Forming Toxins , 1998 .

[76]  Rafael Mulero,et al.  Nanopore-Based Devices for Bioanalytical Applications , 2010 .

[77]  Jin Kon Kim,et al.  Single-file diffusion of protein drugs through cylindrical nanochannels. , 2010, ACS nano.

[78]  Rajendrani Mukhopadhyay,et al.  DNA sequencers: the next generation. , 2009, Analytical chemistry.

[79]  Amit Meller,et al.  Progress toward ultrafast DNA sequencing using solid-state nanopores. , 2007, Clinical chemistry.

[80]  Omar Azzaroni,et al.  Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters. , 2010, Journal of the American Chemical Society.