Structural close-related aromatic compounds have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes sp. I-62.

[1]  G. Sannia,et al.  Laccase fromPleurotus ostreatus , 1986, Biotechnology Letters.

[2]  O. Loera,et al.  Comparative analysis of laccase‐isozymes patterns of several related Polyporaceae species under different culture conditions , 2004, Journal of basic microbiology.

[3]  U. Germann,et al.  Regulation of laccase synthesis in induced Neurospora crassa cultures , 1991, Current Genetics.

[4]  A. Hüttermann,et al.  Laccase induction in the white-rot fungus Heterobasidion annosum (Fr.) Bref. (Fomes annosus Fr. Cooke) , 1983, Archives of Microbiology.

[5]  K. Esser,et al.  The phenoloxidases of the ascomycete Podospora anserina , 1977, Molecular and General Genetics MGG.

[6]  Ángel T. Martínez,et al.  Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungusPleurotus eryngii , 2004, Applied Microbiology and Biotechnology.

[7]  A. González,et al.  Use of Multiplex Reverse Transcription-PCR To Study the Expression of a Laccase Gene Family in a Basidiomycetous Fungus , 2003, Applied and Environmental Microbiology.

[8]  Howard Junca,et al.  Identification of a new laccase gene and confirmation of genomic predictions by cDNA sequences of Trametes sp. I-62 laccase family. , 2003, Mycological research.

[9]  A. Mayer,et al.  Laccase: new functions for an old enzyme. , 2002, Phytochemistry.

[10]  A. Matuszewska,et al.  Fungal laccase: properties and activity on lignin , 2001, Journal of basic microbiology.

[11]  A. Dobson,et al.  Differential regulation of laccase gene expression in Pleurotus sajor-caju. , 2001, Microbiology.

[12]  R. Gouka,et al.  Cloning of a Phenol Oxidase Gene fromAcremonium murorum and Its Expression inAspergillus awamori , 2001, Applied and Environmental Microbiology.

[13]  A. Hüttermann,et al.  Enhanced stability of laccase in the presence of phenolic compounds , 2000, Applied Microbiology and Biotechnology.

[14]  M. C. Terrón,et al.  Pyrolysis/gas chromatography/mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp. I-62 (CECT 20197). , 2000, Rapid communications in mass spectrometry : RCM.

[15]  G. Gil,et al.  Biochemical and Molecular Characterization of a Laccase from Marasmius quercophilus , 2000, Applied and Environmental Microbiology.

[16]  G. Sannia,et al.  Copper Induction of Laccase Isoenzymes in the Ligninolytic Fungus Pleurotus ostreatus , 2000, Applied and Environmental Microbiology.

[17]  H. Kwan,et al.  Characterization, Molecular Cloning, and Differential Expression Analysis of Laccase Genes from the Edible MushroomLentinula edodes , 1999, Applied and Environmental Microbiology.

[18]  A. Scaloni,et al.  Protein and gene structure of a blue laccase from Pleurotus ostreatus1. , 1999, The Biochemical journal.

[19]  Breen,et al.  Fungi in lignocellulose breakdown and biopulping , 1999, Current opinion in biotechnology.

[20]  M. Mansur,et al.  Differential Gene Expression in the Laccase Gene Family from Basidiomycete I-62 (CECT 20197) , 1998, Applied and Environmental Microbiology.

[21]  P. Collins,et al.  Regulation of Laccase Gene Transcription in Trametes versicolor , 1997, Applied and environmental microbiology.

[22]  M. Mansur,et al.  Identification of a laccase gene family in the new lignin-degrading basidiomycete CECT 20197 , 1997, Applied and environmental microbiology.

[23]  F. Guillén,et al.  Induction and Characterization of Laccase in the Ligninolytic Fungus Pleurotus eryngii , 1997, Current Microbiology.

[24]  U. Temp,et al.  The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase , 1996, Applied and environmental microbiology.

[25]  I. Reid,et al.  Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization , 1995, Applied and environmental microbiology.

[26]  C. Thurston The structure and function of fungal laccases , 1994 .

[27]  A. Sethuraman,et al.  Microbial Delignification with White Rot Fungi Improves Forage Digestibility , 1993, Applied and environmental microbiology.

[28]  J. Knowles,et al.  Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. , 1991, Journal of general microbiology.

[29]  A. Tsukamoto,et al.  Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. , 1990, The Journal of biological chemistry.

[30]  T. Lundell,et al.  The potential of white‐rot fungi and their enzymes in the treatment of lignocellulosic feed , 1989 .

[31]  D. Anderson,et al.  Laccase-mediated detoxification of phenolic compounds , 1988, Applied and environmental microbiology.

[32]  G. Galletti,et al.  Electrochemical detection in the high-performance liquid chromatographic analysis of plant phenolics. , 1988, The Analyst.

[33]  R. Farrell,et al.  Enzymatic "combustion": the microbial degradation of lignin. , 1987, Annual review of microbiology.

[34]  K. L. Shuttleworth,et al.  Production of induced laccase by the fungus Rhizoctonia praticola , 1986 .

[35]  M. Tien,et al.  Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain , 1986 .

[36]  K. Lundquist,et al.  Exhaustive laccase-catalysed oxidation of a lignin model compound (vanillyl glycol) produces methanol and polymeric quinoid products. , 1985, The Biochemical journal.

[37]  A. Leonowicz,et al.  Comparative Studies of Extracellular Fungal Laccases , 1984, Applied and environmental microbiology.

[38]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .