Nanostructure and reactivity of soot from biofuel 2,5-dimethylfuran pyrolysis with CO2 additions

[1]  Dong Liu,et al.  Effects of water addition on soot properties in ethylene inverse diffusion flames , 2019, Fuel.

[2]  Dong Liu,et al.  Nanostructure evolution and reactivity of nascent soot from inverse diffusion flames in CO2, N2, and He atmospheres , 2018, Carbon.

[3]  Dong Liu,et al.  Soot reduction by addition of dimethyl carbonate in normal and inverse ethylene diffusion flames: Nanostructural evidence. , 2018, Journal of environmental sciences.

[4]  Dong Liu,et al.  Effects of swirling combustion on soot characteristics in 2,5-dimethylfuran/n-heptane diffusion flames , 2018, Applied Thermal Engineering.

[5]  Bo Jiang,et al.  Nanoscale Characteristics and Reactivity of Nascent Soot from n-Heptane/2,5-Dimethylfuran Inverse Diffusion Flames with/without Magnetic Fields , 2018, Energies.

[6]  Zhen Huang,et al.  Experimental and kinetic study of the effects of CO2 and H2O addition on PAH formation in laminar premixed C2H4/O2/Ar flames , 2018, Combustion and Flame.

[7]  Dong Liu,et al.  Nanostructure and reactivity of carbon particles from co-pyrolysis of biodiesel surrogate methyl octanoate blended with n-butanol , 2018 .

[8]  Dong Liu,et al.  Soot in flame-wall interactions: Views from nanostructure and reactivity , 2018 .

[9]  Dong Liu,et al.  Effects of Flame Configuration and Soot Aging on Soot Nanostructure and Reactivity in n-Butanol-Doped Ethylene Diffusion Flames , 2017 .

[10]  Dong Liu,et al.  Effects of butanol isomers additions on soot nanostructure and reactivity in normal and inverse ethylene diffusion flames , 2017 .

[11]  Dong Liu,et al.  On the Response of Nascent Soot Nanostructure and Oxidative Reactivity to Photoflash Exposure , 2017 .

[12]  Xiaoping Chen,et al.  The pyrolysis and gasification performances of waste textile under carbon dioxide atmosphere , 2017, Journal of Thermal Analysis and Calorimetry.

[13]  Helin Xiao,et al.  Combustion and emission characteristics of diesel engine fueled with 2,5-dimethylfuran and diesel blends , 2017 .

[14]  R. Bilbao,et al.  Influence of the Temperature and 2,5-Dimethylfuran Concentration on Its Sooting Tendency , 2016 .

[15]  Qiye Jin,et al.  Numerical investigation on separate physicochemical effects of carbon dioxide on coal char combustion in O2/CO2 environments , 2016 .

[16]  Shrinivas Bojanampati,et al.  Effects of 2,5-dimethylfuran addition to diesel on soot nanostructures and reactivity , 2015 .

[17]  Günter Scheffknecht,et al.  Oxyfuel combustion for CO2 capture in power plants , 2015 .

[18]  Dong Liu Chemical Effects of Carbon Dioxide Addition on Dimethyl Ether and Ethanol Flames: A Comparative Study , 2015 .

[19]  JoAnn S. Lighty,et al.  Soot Oxidation Kinetics Under Pressurized Conditions , 2014 .

[20]  M. Fraser,et al.  Atmospheric black carbon deposition and characterization of biomass burning tracers in a northern temperate forest , 2014 .

[21]  Zhanjun Cheng,et al.  Experimental and kinetic modeling study of 2,5-dimethylfuran pyrolysis at various pressures , 2014 .

[22]  Shen Hai-qing Xu Cang-su MA Zhi-yan Experiment of combustion characteristics and emissions of gasoline-DMF blends , 2013 .

[23]  P. Glaude,et al.  A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. , 2013, Combustion and flame.

[24]  R. Bilbao,et al.  Polycyclic aromatic hydrocarbons (PAH), soot and light gases formed in the pyrolysis of acetylene at different temperatures: Effect of fuel concentration , 2013 .

[25]  F. Mondragón,et al.  Chemical characterization of soot precursors and soot particles produced in hexane and diesel surrogates using an inverse diffusion flame burner , 2013 .

[26]  O. Armas,et al.  Impact of fuel formulation on the nanostructure and reactivity of diesel soot , 2012 .

[27]  A. Jensen,et al.  Soot Reactivity in Conventional Combustion and Oxy-fuel Combustion Environments , 2012 .

[28]  R. Bilbao,et al.  Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n-butanol , 2012 .

[29]  Randy L. Vander Wal,et al.  A comparison of soot nanostructure obtained using two high resolution transmission electron microscopy image analysis algorithms , 2011 .

[30]  Randy L. Vander Wal,et al.  Development of an HRTEM image analysis method to quantify carbon nanostructure , 2011 .

[31]  Alexis T. Bell,et al.  A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids , 2010 .

[32]  B. Bose,et al.  Global Warming: Energy, Environmental Pollution, and the Impact of Power Electronics , 2010, IEEE Industrial Electronics Magazine.

[33]  R. Bilbao,et al.  Soot formation from C2H2 and C2H4 pyrolysis at different temperatures , 2007 .

[34]  R. Bilbao,et al.  Influence of the temperature on the properties of the soot formed from C2H2 pyrolysis , 2007 .

[35]  T. Hartmann,et al.  The effect of supercritical carbon dioxide treatment on the leachability and structure of cemented radioactive waste-forms , 1999 .

[36]  A. M. Brasil,et al.  a Recipe for Image Characterization of Fractal-Like Aggregates , 1998 .

[37]  Meyer Steinberg,et al.  Fossil fuel decarbonization technology for mitigating global warming , 1998 .

[38]  Athanasios Tsolakis,et al.  Impact of exhaust gas fuel reforming and exhaust gas recirculation on particulate matter morphology in Gasoline Direct Injection Engine , 2017 .

[39]  Xingcai Lu,et al.  Recent progress in the development of biofuel 2,5-dimethylfuran. , 2015 .

[40]  Mingfa Yao,et al.  Combustion and emissions of 2,5-dimethylfuran addition on a diesel engine with low temperature combustion , 2013 .

[41]  R. Bilbao,et al.  Experimental study on the effect of different CO2 concentrations on soot and gas products from ethylene thermal decomposition , 2012 .

[42]  RajenderKumar Gupta,et al.  Oxy-fuel combustion technology for coal-fired power generation , 2005 .

[43]  Linda G. Blevins,et al.  The existence of young soot in the exhaust of inverse diffusion flames , 2002 .