Traffic Sign Classification based on Neural Network for Advance Driver Assistance System

Traffic sign is utmost important information or rule in transportation. In order to ensure the transportation safety the automotive industry has developed Advance Driver Assistance System (ADAS). Among the ADAS system, development of TSDR is the most challenging to the researchers and developers due to unsatisfying performance. This paper deals with, automatic traffic sign classification and reduces the effect of illumination and variable lighting over the classification scheme by using neural network according to the traffic sign shape. There are three main phase of the classification scheme such as; pre-processing using image normalization, feature extraction using color information of 16-point pixel values and multilayer feed forward neural network for classification. An accuracy rate of 84.4% has been achieved by the proposed system. Overall processing time of 0.134s shows the system is a fast system and real-time application. Streszczenie. W artykule opisano metode automatycznego rozpoznawania I klasyfikacji znakow drogowych z przenaczeniem do inteligentnych systemow wspomagania kierowcy ADAS. Do tego celu wykorzystano sieci neuronowe przeprowadzając normalizacje obrazu, ekstrakcje cech i klasyfikacje. Osiągnie™o dokladnośc rozpoznawania rzedu 84% przy przecietnym czasie rozpoznawania okolo 0.13 s. Rozpoznawanie i klasyfikacja znakow drogowych z wykorzystaniem sieci neuronowych

[1]  Michael Felsberg,et al.  Using Fourier Descriptors and Spatial Models for Traffic Sign Recognition , 2011, SCIA.

[2]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Cheng Liang,et al.  Automatic detection and recognition of traffic signs in stereo images based on features and probabilistic neural networks , 2008, SPIE Photonics Europe.

[4]  J. Pablo,et al.  Advanced driver assistance system based on computer vision using detection, recognition and tracking of road signs , 2009 .

[5]  Fatin Zaklouta,et al.  Real-time traffic sign recognition in three stages , 2014, Robotics Auton. Syst..

[6]  J. Todd Book Review: Digital image processing (second edition). By R. C. Gonzalez and P. Wintz, Addison-Wesley, 1987. 503 pp. Price: £29.95. (ISBN 0-201-11026-1) , 1988 .

[7]  Antonio Fernández-Caballero,et al.  An optimization on pictogram identification for the road-sign recognition task using SVMs , 2010, Comput. Vis. Image Underst..

[8]  Dzuraidah Abd. Wahab,et al.  Development of occupant classification and position detection for intelligent safety system , 2006 .

[9]  Arturo de la Escalera,et al.  Traffic sign recognition and analysis for intelligent vehicles , 2003, Image Vis. Comput..

[10]  H. Dujmic,et al.  Scene Text Extraction in HSI Color Space using K-means Algorithm and Modified Cylindrical Distance , 2013 .

[11]  Le Zhang,et al.  Traffic-signs recognition system based on multi-features , 2012, 2012 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings.

[12]  Hilmi Sanusi,et al.  VEHICLE CRASH ANALYSIS FOR AIRBAG DEPLOYMENT DECISION , 2006 .

[13]  Anjan Gudigar,et al.  Kernel Based Automatic Traffic Sign Detection and Recognition Using SVM , 2012, ICECCS 2012.

[14]  H. Levent Akin,et al.  Real-time traffic sign detection and classification method for intelligent vehicles , 2012, 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012).

[15]  Bin Fang,et al.  Traffic Sign Segmentation and Recognition in Scene Images , 2010, 2010 Chinese Conference on Pattern Recognition (CCPR).

[16]  Salina Abdul Samad,et al.  Development of an embedded vehicle safety system for frontal crash detection , 2008 .