On the girth of extremal graphs without shortest cycles
暂无分享,去创建一个
Camino Balbuena | Pedro García-Vázquez | Martín Cera | Ana Diánez | C. Balbuena | M. Cera | A. Diánez | P. García-Vázquez
[1] David K. Garnick,et al. Extremal graphs without three-cycles or four-cycles , 1993, J. Graph Theory.
[2] C. Balbuena,et al. On the Minimum Order of Extremal Graphs to have a Prescribed Girth , 2007, SIAM J. Discret. Math..
[3] Mirka Miller,et al. Calculating the extremal number ex(v;{C3, C4, ..., Cn}) , 2006, Discret. Appl. Math..
[4] Makoto Imase,et al. Connectivity of Regular Directed Graphs with Small Diameters , 1985, IEEE Transactions on Computers.
[5] L. Lovász. Combinatorial problems and exercises , 1979 .
[6] Mehdi Behzad,et al. Graphs and Digraphs , 1981, The Mathematical Gazette.
[7] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[8] Pak-Ken Wong,et al. Cages - a survey , 1982, J. Graph Theory.
[9] Camino Balbuena,et al. Extremal bipartite graphs with high girth , 2006, Ars Comb..
[10] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[11] Felix Lazebnik,et al. On the structure of extremal graphs of high girth , 1997 .
[12] Miguel Angel Fiol,et al. Maximally connected digraphs , 1989, J. Graph Theory.