Heyting Wajsberg Algebras as an Abstract Environment Linking Fuzzy and Rough Sets
暂无分享,去创建一个
[1] D Ciucci,et al. BZW algebras for an abstract approach to roughness and fuzziness , 2002 .
[2] R. Sikorski,et al. The mathematics of metamathematics , 1963 .
[3] Gianpiero Cattaneo,et al. Some algebraicstructures for many-valued logics , 1998 .
[4] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[5] Gianpiero Cattaneo,et al. Brouwer-Zadeh posets and three-valued Ł ukasiewicz posets , 1989 .
[6] Brian F. Chellas. Modal Logic: Normal systems of modal logic , 1980 .
[7] N. Rescher. Many Valued Logic , 1969 .
[8] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[9] J. Kacprzyk,et al. Incomplete Information: Rough Set Analysis , 1997 .
[10] P. Pagliani. Rough Set Theory and Logic-Algebraic Structures , 1998 .
[11] Francesc Esteva,et al. Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .
[12] Gianpiero Cattaneo,et al. BZMVdM algebras and stonian MV-algebras (applications to fuzzy sets and rough approximations) , 1999, Fuzzy Sets Syst..
[13] A. Monteiro. Sur les algèbres de Heyting symétriques , 1980 .
[14] E. Turunen. Mathematics Behind Fuzzy Logic , 1999 .