Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback

We study a passively mode-locked semiconductor ring laser subject to optical feedback from an external mirror. Using a delay differential equation model for the mode-locked laser, we are able to systematically investigate the resonance effects of the inter-spike interval time of the laser and the roundtrip time of the light in the external cavity (delay time) for intermediate and long delay times. We observe synchronization plateaus following the ordering of the well-known Farey sequence. Our results show that in agreement with the experimental results a reduction of the timing jitter is possible if the delay time is chosen close to an integer multiple of the inter-spike interval time of the laser without external feedback. Outside the main resonant regimes the timing jitter is drastically increased by the feedback.

[1]  Eckehard Schöll,et al.  Complex Dynamics of semiconductor Quantum dot Lasers subject to delayed Optical Feedback , 2012, Int. J. Bifurc. Chaos.

[2]  Goebel,et al.  Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[3]  F. Grillot,et al.  Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser , 2009 .

[4]  Abderrahim Ramdane,et al.  Low noise performance of passively mode locked quantum-dash-based lasers under external optical feedback , 2009 .

[5]  I. I. Zasavitskii,et al.  Active-region designs in quantum cascade lasers , 2012 .

[6]  Bernd Krauskopf,et al.  Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers , 2005 .

[7]  Thomas Erneux,et al.  Laser Dynamics: Contents , 2010 .

[8]  Eckehard Schöll,et al.  Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors , 2001 .

[9]  Luke F. Lester,et al.  Microwave Characterization and Stabilization of Timing Jitter in a Quantum-Dot Passively Mode-Locked Laser via External Optical Feedback , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  E Schöll,et al.  Interplay of time-delayed feedback control and temporally correlated noise in excitable systems , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  I. Montrosset,et al.  Modeling Passive Mode-Locking in Quantum Dot Lasers: A Comparison Between a Finite-Difference Traveling-Wave Model and a Delayed Differential Equation Approach , 2011, IEEE Journal of Quantum Electronics.

[12]  Mindaugas Radziunas,et al.  Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers , 2001 .

[13]  H. Haus,et al.  A theory of forced mode locking , 1975, IEEE Journal of Quantum Electronics.

[14]  E. L. Portnoi,et al.  Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications , 2000 .

[15]  I. Montrosset,et al.  Impact of Gain Saturation on Passive Mode Locking Regimes in Quantum Dot Lasers With Straight and Tapered Waveguides , 2011, IEEE Journal of Quantum Electronics.

[16]  G Huyet,et al.  Optically injected mode-locked laser. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  M. Kuntz,et al.  Hybrid mode-locking in a 40 GHz monolithic quantum dot laser , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[18]  K. Yvind,et al.  Investigations of Repetition Rate Stability of a Mode-Locked Quantum Dot Semiconductor Laser in an Auxiliary Optical Fiber Cavity , 2010, IEEE Journal of Quantum Electronics.

[19]  Gerrit Fiol,et al.  Dynamical regimes in a monolithic passively mode-locked quantum dot laser , 2010 .

[20]  D. Turaev,et al.  Model for passive mode locking in semiconductor lasers (13 pages) , 2005 .

[21]  D. Bimberg,et al.  Locking characteristics of a 40-GHz hybrid mode-locked monolithic quantum dot laser , 2010, Photonics Europe.

[22]  D. Bimberg,et al.  Fundamental limits of sub-ps pulse generation by active mode locking of semiconductor lasers: the spectral gain width and the facet reflectivities , 1991 .

[23]  E. Avrutin,et al.  Dynamics and Spectra of Monolithic Mode-Locked Laser Diodes Under External Optical Feedback , 2009, IEEE Journal of Quantum Electronics.

[24]  Mindaugas Radziunas,et al.  40 GHz Mode-Locked Semiconductor Lasers: Theory, Simulations and Experiment , 2006 .

[25]  G. Duan,et al.  Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 $\mu$m , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  O. Solgaard,et al.  Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers , 1993, IEEE Photonics Technology Letters.

[27]  H. E. Lassen,et al.  Traveling wave analysis of semiconductor lasers: modulation responses, mode stability and quantum mechanical treatment of noise spectra , 1994 .

[28]  Edik U. Rafailov,et al.  Ultrafast Lasers Based on Quantum Dot Structures: Physics and Devices , 2011 .

[29]  Philipp Hövel,et al.  Synchronization of Coupled Neural oscillators with Heterogeneous delays , 2012, Int. J. Bifurc. Chaos.

[30]  I. Montrosset,et al.  Simulation and Analysis of Dynamic Regimes Involving Ground and Excited State Transitions in Quantum Dot Passively Mode-Locked Lasers , 2012, IEEE Journal of Quantum Electronics.

[31]  C. Christodoulou,et al.  RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback , 2011 .

[32]  Yan Li,et al.  Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser. , 2010, Optics express.

[33]  Gregory Kozyreff,et al.  Delay differential equations for mode-locked semiconductor lasers. , 2004, Optics letters.

[34]  D. Rachinskii,et al.  Modeling of Passively Mode-Locked Semiconductor Lasers , 2012 .

[35]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Gerrit Fiol,et al.  1.3 µm range 40 GHz quantum-dot mode-locked laser under external continuous wave light injection or optical feedback , 2011 .

[37]  F. Grillot,et al.  rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback , 2010 .

[38]  J. Mork,et al.  Analysis of timing jitter in external-cavity mode-locked semiconductor lasers , 2006, IEEE Journal of Quantum Electronics.

[39]  D. Lenstra,et al.  Dynamical behavior of a semiconductor laser with filtered external optical feedback , 1999 .

[40]  D. Syvridis,et al.  Two-Section Quantum-Dot Mode-Locked Lasers Under Optical Feedback: Pulse Broadening and Harmonic Operation , 2012, IEEE Journal of Quantum Electronics.

[41]  Goebel,et al.  Farey tree and devil's staircase of a modulated external-cavity semiconductor laser. , 1989, Physical review letters.

[42]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[43]  Eckehard Schöll,et al.  Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios , 2010 .

[44]  A.G. Vladimirov,et al.  Numerical Study of Dynamical Regimes in a Monolithic Passively Mode-Locked Semiconductor Laser , 2009, IEEE Journal of Quantum Electronics.

[45]  Evgeny A. Viktorov,et al.  Model for mode locking in quantum dot lasers , 2006 .

[46]  Eckehard Schöll,et al.  Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  G. New Pulse evolution in mode-locked quasi-continuous lasers , 1974 .

[48]  Gregg M. Gallatin,et al.  Nonlinear laser dynamics : from quantum dots to cryptography , 2011 .