Birth and life of the $L^{2}$ boundedness of the Cauchy Integral on Lipschitz graphs

We review various motives for considering the problem of estimating the Cauchy Singular Integral on Lipschitz graphs in the L2 norm. We follow the thread that led to the solution and then describe a few of the innumerable applications and ramifications of this fundamental result. We concentrate on its influence in complex analysis, geometric measure theory and harmonic measure. AMS 2010 Mathematics Subject Classification: 31A15 (primary); 49K20 (secondary).

[1]  Geometric Measure Theory–Recent Applications , 2019, Notices of the American Mathematical Society.

[2]  J. Verdera On theT(1)-theorem for the Cauchy integral , 2000 .

[3]  Joan Verdera,et al.  The planar Cantor sets of zero analytic capacity and the local T(b)-theorem , 2002 .

[4]  Peter W. Jones Square functions, Cauchy integrals, analytic capacity, and harmonic measure , 1989 .

[5]  On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1 , 2012, 1212.5229.

[6]  E. Stein SINGULAR INTEGRALS : THE ROLES OF CALDERON AND ZYGMUND , 1998 .

[7]  X. Tolsa,et al.  The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions , 2012, 1212.5431.

[8]  L. H. Loomis A note on the Hilbert transform , 1946 .

[9]  Xavier Tolsa,et al.  ON THE ANALYTIC CAPACITY γ+ , 2003 .

[10]  Peter W. Jones,et al.  BMO from dyadic BMO , 1982 .

[11]  Laura Prat Potential theory of signed Riesz kernels: capacity and Hausdorff measure , 2004 .

[12]  A. Calderón,et al.  Cauchy integrals on Lipschitz curves and related operators. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[13]  E. Dyn’kin Methods of the Theory of Singular Integrals: Littlewood-Paley Theory and Its Applications , 1992 .

[14]  J. Verdera $C^m$ approximation by solutions of elliptic equations, and Calderón-Zygmund operators , 1987 .

[15]  Principal values for Riesz transforms and rectifiability , 2007, 0708.0109.

[16]  J. C. Leger Menger curvature and rectifiability , 1999 .

[17]  G. David,et al.  Opérateurs intégraux singuliers sur certaines courbes du plan complexe , 1984 .

[18]  Characterization of rectifiable measures in terms of 𝛼-numbers , 2018, 1808.07661.

[19]  Cauchy Singular Integrals and Rectifiability of Measures in the Plane , 1995 .

[20]  Matthew Badger Generalized rectifiability of measures and the identification problem , 2018, Complex Analysis and its Synergies.

[21]  Z. Nehari Bounded analytic functions , 1950 .

[22]  Carlos E. Kenig,et al.  Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems , 1994 .

[23]  S. Treil,et al.  The Tb-theorem on non-homogeneous spaces that proves a conjecture of Vitushkin , 2014, 1401.2479.

[24]  J. Verdera,et al.  A geometric proof of the L2 boundedness of the Cauchy integral on Lipschitz graphs , 1995 .

[25]  P. Mattila Geometry of Sets and Measures in Euclidean Spaces: Rectifiability and singular integrals , 1995 .

[26]  X. Tolsa $L^2$-boundedness of the Cauchy integral operator for continuous measures , 1999 .

[27]  X. Domènech Bilipschitz maps, analytic capacity, and the Cauchy integral , 2005 .

[28]  A. Volberg Calderón-Zygmund Capacities and Operators on Nonhomogeneous Spaces , 2003 .

[29]  Joan Verdera,et al.  The Cauchy integral, analytic capacity, and uniform rectifiability , 1996 .

[30]  Y. Meyer,et al.  Wavelets: Calderón-Zygmund and Multilinear Operators , 1997 .

[31]  J. Jodeit,et al.  Potential techniques for boundary value problems on C1-domains , 1978 .

[32]  A. Calderón COMMUTATORS OF SINGULAR INTEGRAL OPERATORS. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. I. Shtern,et al.  Uniform approximations by bianalytic functions on arbitrary compact subsets of , 2016 .

[34]  X. Tolsa The semiadditivity of continuous analytic capacity and the inner boundary conjecture , 2004 .

[35]  S. Semmes,et al.  Analysis of and on uniformly rectifiable sets , 1993 .

[36]  Y. Meyer,et al.  L'integrale de Cauchy Definit un Operateur Borne sur L 2 Pour Les Courbes Lipschitziennes , 1982 .

[37]  Nguyen Xuan Uy Removable sets of analytic functions satisfying a Lipschitz condition , 1979 .

[38]  X. Tolsa Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory , 2013 .

[39]  G. David,et al.  Removable sets for Lipschitz harmonic functions in the plane , 2000 .

[40]  G. David Analytic capacity, Calderón-Zygmund operators, and rectifiability , 1999 .

[41]  Christopher J. Bishop,et al.  Harmonic measure and arclength , 1990 .

[42]  X. Tolsa Growth Estimates for Cauchy Integrals of Measures and Rectifiability , 2007 .

[43]  Smooth maps, null-sets for integralgeometric measure and analytic capacity , 1986 .

[44]  Hervé Pajot,et al.  Analytic capacity, rectifiability, Menger curvature and the Cauchy integral , 2002 .

[45]  Positive length but zero analytic capacity , 1970 .

[46]  P. Garabedian Schwarz’s lemma and the Szegö kernel function , 1949 .

[47]  G. David Unrectictifiable 1-sets have vanishing analytic capacity , 1998 .

[48]  Damian Dąbrowski Sufficient Condition for Rectifiability Involving Wasserstein Distance $$W_2$$ , 2019, The Journal of Geometric Analysis.

[49]  M S Mel'nikov,et al.  Analytic capacity: discrete approach and curvature of measure , 1995 .

[50]  J. Mcmillan Boundary Properties of Analytic Functions , 1967 .

[51]  Michael Christ,et al.  A T(b) theorem with remarks on analytic capacity and the Cauchy integral , 1990 .

[52]  X. Tolsa,et al.  Rectifiability of harmonic measure , 2015, 1509.06294.

[53]  G. David Wavelets and Singular Integrals on Curves and Surfaces , 1991 .

[54]  Painlevé's problem and the semiadditivity of analytic capacity , 2002, math/0204027.

[55]  Peter W. Jones Rectifiable sets and the Traveling Salesman Problem , 1990 .

[56]  X. Tolsa,et al.  A proof of Carleson's 𝜀2-conjecture , 2019, Annals of Mathematics.

[57]  B. Øksendal,et al.  Analytic capacity and differentiability properties of finely harmonic functions , 1982 .

[58]  T. A. Dowling,et al.  Affine transformations and analytic capacities , 1995 .

[59]  A. G. Vitushkin,et al.  The analytic capacity of sets in problems of approximation theory , 1967 .

[60]  Martin Greiner,et al.  Wavelets , 2018, Complex..