A strain of diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), adapted to peas was detected in 1999 in the export vegetable growing area south of Lake Naivasha in the Rift Valley Province of Kenya. The pea strain (DBM-P) was compared in laboratory studies to the normal crucifer strain (DBM-C). Whereas DBM-P performed comparably well on kales and peas, the cabbage strain (DBM-C) suffered heavy mortality on peas. Out of the 250 DBM-C first instars, only six reached adult stage on pea. In addition, larval development was prolonged by five days on peas as compared to kale, and larval growth was greatly reduced. Pupal weights of DBM-C survivors on pea were significantly lower (3.8 mg) than of DBM-P (4.6 mg) and those of both strains on kale (5.7 and 5.3 mg, respectively). Neonate larvae of the pea strain mined on both kale and pea but both the proportion of larvae mining and the number of mining days were lower than for DBM-C on kale. The latter failed completely to mine on pea.A laboratory culture was started with the DBM-C survivors on pea and the performance of the progeny compared on kale and pea in three additional generations of selection. Larval survival increased from 2.4% in the first generation to 28.6%, 41.3% and 49.7% in the second, third and fourth generation, respectively. Pupal weight of larvae reared on pea increased with each generation of selection, but it remained significantly lower than of larvae reared on kale. In spite of the large differences in larval mining on the two host plants, performance on peas was not related to the ability of DBM-C to mine on pea but rather to the ability to initiate feeding without the normal stimuli present in crucifers. Pupal mortality for larvae from both hosts was similar when larvae of equal weight were compared, suggesting acceptable suitability of pea for larval development once the new host is accepted. The implications of these findings on adaptability of DBM to plants beyond its normal host range are discussed.RésuméUne souche de la fausse-teigne des crucifères, Plutella xylostella (L.) (Lepidoptera: Plutellidae), adaptée au pois, a été observée dans une zone de cultures maraîchères d’exportation au sud du Lac Naïvasha dans la province de la Rift Valley au Kenya, en 1999. La souche élevée sur le pois (DBM-P) est comparée à la souche normale élevée sur le chou (DBM-C) en laboratoire. Bien que les performances de la souche DBM-P soient comparables sur chou et sur pois, la souche (DBM-C) a subi une mortalité considérable sur le pois; sur 250 larves du premier stade, six larves seulement ont pu atteindre le stade adulte. Par ailleurs, le développement larvaire est plus long de 5 jours sur le pois par rapport au chou. La croissance larvaire est aussi considérablement réduite. Le poids des chrysalides de la souche DBM-C élevée sur pois est significativement inférieur (3,8 mg) à celui des chrysalides de la souche DBM-P (4,6 mg), ainsi qu’à celui des chrysalides des deux souches élevées sur chou (5,7 et 5,3 mg, respectivement). Les larves neonates de la souche adaptée au pois ont miné les plants de chou et de pois, mais la proportion de larves mineuses et le nombre de jours pour miner sont inférieurs à ceux de la souche DBM-C sur chou. Cette dernière a été incapable de miner le pois. Un élevage a été mis en place au laboratoire à partir des survivants de la souche DBM-C élevés sur pois et les performances des descendants ont été comparées à celles obtenues sur chou et sur pois pendant trois générations. La survie des chenilles a augmenté de 2,4% au cours de la première génération et de 28,6%, 41,3% et 49,7% au cours des générations suivantes. Sur pois, le poids des chrysalides a augmenté après chaque génération; il est cependant resté inférieur à celui des chrysalides obtenues sur chou. En dépit d’énormes différences dans la capacité des larves à miner les deux plantes-hôtes, les performances sur pois ne sont pas liées à la capacité de la souche DBM-C à miner le pois mais plutôt à la capacité de commencer à s’alimenter sans les stimuli normaux présents dans les crucifères. La mortalité des chrysalides sur les deux plantes est identique lorsque les larves de même poids sont comparées. Ce résultat suggère que le pois convient bien au développement larvaire dès lors que le nouvel hôte est accepté. On discute des conséquences de ces résultats sur l’adaptation de la fausse-teigne des crucifères à des plantes non hôtes.
[1]
S. Eigenbrode,et al.
Neonate Plutella xylostella Responses to Surface Wax Components of a Resistant Cabbage (Brassica oleracea)
,
1998,
Journal of Chemical Ecology.
[2]
J. Feder,et al.
Sympatric speciation in phytophagous insects: moving beyond controversy?
,
2002,
Annual review of entomology.
[3]
J. Feder.
The apple maggot fly, Rhagoletis pomonella : flies in the face of conventional wisdom about speciation?
,
1998
.
[4]
S. Eigenbrode,et al.
Effects of Plant Epicuticular Lipids on Insect Herbivores
,
1995
.
[5]
G. H. Abro,et al.
Ecology of diamondback moth, Plutella xylostella (L.) in Pakistan 1. Host plant preference.
,
1994
.
[6]
Anthony M. Shelton,et al.
Biology, Ecology, and Management of the Diamondback Moth
,
1993
.
[7]
A. Shelton,et al.
Survival and behavior of Plutella xylostella larvae on cabbages with leaf waxes altered by treatment with S‐ethyl dipropylthiocarbamate
,
1992
.
[8]
A. Shelton,et al.
Characteristics of Glossy Leaf Waxes Associated with Resistance to Diamondback Moth (Lepidoptera: Plutellidae) in Brassica oleracea
,
1991
.
[9]
A. Shelton,et al.
Behavior of neonate diamondback moth larvae (Lepidoptera: Plutellidae) on glossy-leafed resistant Brassica oleracea L.
,
1990
.
[10]
C. Hung,et al.
Parathion and Methyl Parathion Resistance in Diamondback Moth (Lepidoptera: Plutellidae) Larvae
,
1989
.
[11]
B. Tabashnik,et al.
Leg autotomy of adult diamondback moth (Lepidoptera: Plutellidae) in response to tarsal contact with insecticide residues
,
1989
.
[12]
B. Tabashnik,et al.
Quantitative Genetic Analysis of Insecticide Resistance: Variation in Fenvalerate Tolerance in a Diamondback Moth (Lepidoptera: Plutellidae) Population
,
1989
.
[13]
M. Yao,et al.
Teflubenzuron Resistance in Diamondback Moth (Lepidoptera: Plutellidae)
,
1988
.
[14]
B. Tabashnik,et al.
Diamondback Moth (Lepidoptera: Plutellidae) Resistance to Insecticides in Hawaii: Intra-Island Variation and Cross-Resistance
,
1987
.
[15]
Tetsuo Saitô,et al.
Selection for Resistance of the Diamondback Moth, Plutella xylostella with Fenvalerate
,
1987
.
[16]
J. Chen,et al.
Resistance of diamondback moth (Lepidoptera: Plutellidae) to a combination of fenvalerate and piperonyl butoxide
,
1986
.
[17]
C. Eckenrode,et al.
Resistance of Brassica Lines to the Diamondback Moth (Lepidoptera: Yponomeutidae) in the Field, and Inheritance of Resistance
,
1984
.
[18]
A. A. Cook.
‘Florida VR 2-34’ Bell Pepper
,
1984,
HortScience.
[19]
C. Eckenrode,et al.
Variation in Brassica oleracea Resistance to Diamondback Moth (Lepidoptera: Plutellidae)
,
1983
.
[20]
H. Chi,et al.
Diamondback Moth Resistance to Diazinon and Methomyl in Taiwan
,
1978
.
[21]
A. J. Thorsteinson,et al.
FOOD PLANT RELATIONSHIPS OF THE DIAMOND‐BACK MOTH (PLUTELLA MACULIPENNIS (CURT.)) II. Sensory Regulation of Oviposition of the Adult Female
,
1960
.
[22]
A. J. Thorsteinson,et al.
FOOD PLANT RELATIONSHIPS OF THE DIAMOND‐BACK MOTH (PLUTELLA MACULIPENNIS (CURT.)): I. Gustation and Olfaction in Relation to Botanical Specificity of the Larva
,
1960
.
[23]
C. G. Macnay.
Outbreaks and new records.
,
1953
.
[24]
P. K. Harrison,et al.
The Relative Abundance of Cabbage Caterpillars on Cole Crops Grown under Similar Conditions
,
1943
.