Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4.

[1]  C. Ford,et al.  Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification , 2006 .

[2]  Xi Chen,et al.  Cytidine 5'-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida. , 2006, Biochemistry.

[3]  B. Henrissat,et al.  Recent structural insights into the expanding world of carbohydrate-active enzymes. , 2005, Current opinion in structural biology.

[4]  R. Dixon,et al.  Crystal Structures of a Multifunctional Triterpene/Flavonoid Glycosyltransferase from Medicago truncatula , 2005, The Plant Cell Online.

[5]  A. Bechthold,et al.  Genes encoding enzymes responsible for biosynthesis of L-lyxose and attachment of eurekanate during avilamycin biosynthesis. , 2005, Chemistry & biology.

[6]  S. Moréra,et al.  Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase. , 2005, Journal of molecular biology.

[7]  Benjamin G Davis,et al.  Structural dissection and high-throughput screening of mannosylglycerate synthase , 2005, Nature Structural &Molecular Biology.

[8]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[9]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[10]  Pedro M Alzari,et al.  Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation , 2004, The EMBO journal.

[11]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Rotation Functions Biological Crystallography Likelihood-enhanced Fast Rotation Functions , 2003 .

[12]  S. Withers,et al.  The Donor Subsite of Trehalose-6-phosphate Synthase , 2004, Journal of Biological Chemistry.

[13]  S. Moréra,et al.  Crystal structures of the T4 phage beta-glucosyltransferase and the D100A mutant in complex with UDP-glucose: glucose binding and identification of the catalytic base for a direct displacement mechanism. , 2003, Journal of molecular biology.

[14]  Bernard Henrissat,et al.  An evolving hierarchical family classification for glycosyltransferases. , 2003, Journal of molecular biology.

[15]  Ruth Lloyd,et al.  Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. , 2002, Chemistry & biology.

[16]  S. Withers,et al.  One step closer to a sweet conclusion. , 2002, Chemistry & biology.

[17]  S. Walker,et al.  Remarkable structural similarities between diverse glycosyltransferases. , 2002, Chemistry & biology.

[18]  James O. Wrabl,et al.  Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. , 2001, Journal of molecular biology.

[19]  B Henrissat,et al.  Glycoside hydrolases and glycosyltransferases: families and functional modules. , 2001, Current opinion in structural biology.

[20]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G. Jung,et al.  Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tü57 and production of new antibiotics. , 2001, Chemistry & biology.

[22]  A. Mankin,et al.  A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Whitfield,et al.  Mutation of the Lipopolysaccharide Core Glycosyltransferase Encoded by waaG Destabilizes the Outer Membrane of Escherichia coli by Interfering with Core Phosphorylation , 2000, Journal of bacteriology.

[24]  L. Johnson,et al.  Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question , 2000, The EMBO journal.

[25]  C. Whitfield,et al.  Assembly of the R1-type core oligosaccharide of Escherichia coli lipopolysaccharide , 1999 .

[26]  G. Davies,et al.  Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. , 1999, Biochemistry.

[27]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[28]  G J Davies,et al.  A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. , 1997, The Biochemical journal.

[29]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[30]  L. Johnson,et al.  Oligosaccharide substrate binding in Escherichia coli maltodextrin phosphorylase , 1997, Nature Structural Biology.

[31]  G J Davies,et al.  Nomenclature for sugar-binding subsites in glycosyl hydrolases. , 1997, The Biochemical journal.

[32]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[33]  S. Withers,et al.  Ternary complex crystal structures of glycogen phosphorylase with the transition state analogue nojirimycin tetrazole and phosphate in the T and R states. , 1996, Biochemistry.

[34]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[35]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[36]  P. Freemont,et al.  Crystal structure of the DNA modifying enzyme beta‐glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. , 1994, The EMBO journal.

[37]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[38]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[39]  P. D. de Jong,et al.  Ligation-independent cloning of PCR products (LIC-PCR). , 1990, Nucleic acids research.

[40]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[41]  Yigong Shi,et al.  The 1.9 Å crystal structure of Escherichia coli MurG, a membrane‐associated glycosyltransferase involved in peptidoglycan biosynthesis , 2000, Protein science : a publication of the Protein Society.

[42]  T. Dafforn,et al.  Comprehensive biological catalysis , 1998 .

[43]  G. Wagman,et al.  EVERNINOMICIN, A NEW ANTIBIOTIC COMPLEX FROM MICROMONOSPORA CARBONACEA. , 1964, Antimicrobial agents and chemotherapy.