Comparison of theory with quenching experiments for the entropy and enthalpy of vacancy formation in Si and Ge

In the preceding paper the authors have argued that the entropy of ionization of a vacancy in a semiconductor should be closely approximated by the entropy of the forbidden band gap; $\ensuremath{\Delta}{S}_{c\ensuremath{\nu}}=\ensuremath{\Delta}{S}_{I}({V}^{+})=\ensuremath{\Delta}{S}_{I}({V}^{\ensuremath{-}})$. Here this hypothesis is combined with the hypothesis that the entropy of formation of the neutral vacancy, $\ensuremath{\Delta}S({V}^{x})$, is only the entropy of its Jahn-Teller distortion. Thus $\ensuremath{\Delta}{S}_{I}({V}^{\ifmmode\pm\else\textpm\fi{}})\ensuremath{\gg}\ensuremath{\Delta}S({V}^{x})=k\mathrm{ln}3$ for Si and Ge. Empirical values for the enthalpy of ionization at low temperature, $\ensuremath{\Delta}{H}_{I}({V}^{\ifmmode\pm\else\textpm\fi{}})$, are combined with the values for $\ensuremath{\Delta}H({V}^{x})$ predicted by the macroscopic theory of Phillips and Van Vechten in order to predict the result of quenching experiments taking proper account of the charge states of the vacancies. Agreement with the experiments of Logan, Hiraki, and Elstner and Kamprath is quite satisfactory.

[1]  J. C. Phillips,et al.  Macroscopic Model of Formation of Vacancies in Semiconductors , 1973 .

[2]  C. D. Thurmond The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs , and GaP , 1975 .

[3]  C. D. Thurmond,et al.  Entropy of ionization and temperature variation of ionization levels of defects in semiconductors , 1976 .

[4]  A. Hiraki Experimental Determination of Diffusion and Formation Energies of Thermal Vacancies in Germanium , 1966 .

[5]  J. V. Vechten,et al.  Enthalpy of vacancy migration in Si and Ge , 1974 .

[6]  T. Yamazaki,et al.  Angular Distributions of (α, n) Reaction son Be and C , 1963 .

[7]  R. N. Ghostagore Experimental-Condition Dependence of Phosphorus Diffusivity in Silicon , 1970 .

[8]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[9]  R. Ghoshtagore Donor Diffusion Dynamics in Silicon , 1971 .

[10]  J. V. Vechten,et al.  Simple Theoretical Estimates of the Schottky Constants and Virtual‐Enthalpies of Single Vacancy Formation in Zinc‐Blende and Wurtzite Type Semiconductors , 1975 .

[11]  H. D. Barber Effective mass and intrinsic concentration in silicon , 1967 .

[12]  J. V. Vechten,et al.  Divacancy binding enthalpy in semiconductors , 1975 .

[13]  J. Tauc,et al.  Lattice Vibrations of Semiconductors with a Defect Zinc-Blende Structure , 1973 .

[14]  H. Y. Fan Temperature Dependence of the Energy Gap in Semiconductors , 1951 .

[15]  R. E. Whan INVESTIGATIONS OF OXYGEN-DEFECT INTERACTIONS BETWEEN 25 AND 700 K IN IRRADIATED GERMANIUM , 1965 .

[16]  M. Cohen Electron-Phonon Self-Energies in Many-Valley Semiconductors , 1962 .

[17]  A. Seeger,et al.  DIFFUSION MECHANISMS AND POINT DEFECTS IN SILICON AND GERMANIUM. , 1968 .

[18]  W. Portnoy,et al.  Self-Diffusion in Germanium , 1954 .

[19]  R. Swalin Theoretical calculations of the enthalpies and entropies of diffusion and vacancy formation in semiconductors , 1961 .

[20]  R. Logan Thermally Induced Acceptors in Germanium , 1956 .

[21]  L. Elstner,et al.  Quenched‐in Levels in p‐Type Silicon , 1967 .

[22]  J. Tauc,et al.  Lattice dynamics of tetrahedrally bonded semiconductors containing ordered vacant sites , 1975 .