Resilient and robust finite-time H∞ control for uncertain discrete-time jump nonlinear systems

Abstract This paper studies the robust and resilient finite-time H∞ control problem for uncertain discrete-time nonlinear systems with Markovian jump parameters. With the help of linear matrix inequalities and stochastic analysis techniques, the criteria concerning stochastic finite-time boundedness and stochastic H∞ finite-time boundedness are initially established for the nonlinear stochastic model. We then turn to stochastic finite-time controller analysis and design to guarantee that the stochastic model is stochastically H∞ finite-time bounded by employing matrix decomposition method. Applying resilient control schemes, the resilient and robust finite-time controllers are further designed to ensure stochastic H∞ finite-time boundedness of the derived stochastic nonlinear systems. Moreover, the results concerning stochastic finite-time stability and stochastic finite-time boundedness are addressed. All derived criteria are expressed in terms of linear matrix inequalities, which can be solved by utilizing the available convex optimal method. Finally, the validity of obtained methods is illustrated by numerical examples.

[1]  Weihai Zhang,et al.  Finite‐Time Stability and Stabilization of Linear Itô Stochastic Systems with State and Control‐Dependent Noise , 2013 .

[2]  D. Sworder,et al.  Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria , 1975 .

[3]  Fei Liu,et al.  Stochastic finite-time boundedness of Markovian jumping neural network with uncertain transition probabilities , 2011 .

[4]  L. Chua,et al.  A universal circuit for studying and generating chaos. I. Routes to chaos , 1993 .

[5]  Caixia Liu,et al.  Observer-based finite-timeHcontrol of discrete-time Markovian jump systems , 2013, Applied Mathematical Modelling.

[6]  Francesco Amato,et al.  Finite-Time Stability of Linear Time-Varying Systems: Analysis and Controller Design , 2010, IEEE Transactions on Automatic Control.

[7]  Francesco Amato,et al.  Sufficient Conditions for Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems , 2010, IEEE Transactions on Automatic Control.

[8]  J. M. Sanz-Serna,et al.  Vibrational resonance: a study with high-order word-series averaging , 2016 .

[9]  Yuechao Ma,et al.  Robust finite-time H∞ control for discrete-time singular Markovian jump systems with time-varying delay and actuator saturation , 2016, Appl. Math. Comput..

[10]  Oswaldo Luiz do Valle Costa,et al.  Constrained quadratic state feedback control of discrete-time Markovian jump linear systems , 1999, Autom..

[11]  M. Zhong,et al.  On optimal fault detection for discrete-time Markovian jump linear systems , 2013 .

[12]  Chee Seng Chan,et al.  Non-fragile state observer design for neural networks with Markovian jumping parameters and time-delays , 2014 .

[13]  José Claudio Geromel,et al.  Optimal H2 state feedback sampled-data control design of Markov Jump Linear Systems , 2015, Autom..

[14]  Faryar Jabbari,et al.  A direct characterization of L2-gain controllers for LPV systems , 1998, IEEE Trans. Autom. Control..

[15]  Wei Xing Zheng,et al.  Generalized H2 fault detection for two-dimensional Markovian jump systems , 2012, Autom..

[16]  Vladimir I. Nekorkin,et al.  Jittering regimes of two spiking oscillators with delayed coupling , 2016 .

[17]  Shengyuan Xu,et al.  Robust H∞ filtering for uncertain Markovian jump systems with mode-dependent time delays , 2003, IEEE Trans. Autom. Control..

[18]  Francesco Amato,et al.  Finite-time control of linear systems subject to parametric uncertainties and disturbances , 2001, Autom..

[19]  Caixia Liu,et al.  Robust finite-time stabilization of uncertain singular Markovian jump systems , 2012 .

[20]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[21]  H. Kushner Finite time stochastic stability and the analysis of tracking systems , 1966 .

[22]  Asad Azemi,et al.  Full and reduced-order-robust adaptive observers for chaotic synchronization , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[23]  Yan Lin,et al.  A unified design for state and output feedback H∞ control of nonlinear stochastic Markovian jump systems with state and disturbance-dependent noise , 2009, Autom..

[24]  Ligang Wu,et al.  Output Feedback Control of Markovian Jump Repeated Scalar Nonlinear Systems , 2014 .

[25]  Ju H. Park,et al.  Finite-time synchronization control for uncertain Markov jump neural networks with input constraints , 2014, Nonlinear Dynamics.

[26]  Peng Shi,et al.  Robust sampled-data control for Markovian jump linear systems , 2006, Autom..

[27]  Ju H. Park,et al.  Stability and H∞ performance analysis for Markovian jump systems with time-varying delays , 2014, J. Frankl. Inst..

[28]  Peng Shi,et al.  Observer-based finite-time H∞ control for discrete singular stochastic systems , 2014, Appl. Math. Lett..

[29]  Weihai Zhang,et al.  Finite-Time Stability and Stabilization of Itô Stochastic Systems With Markovian Switching: Mode-Dependent Parameter Approach , 2015, IEEE Transactions on Automatic Control.

[30]  Lihong Huang,et al.  H∞ performance for a class of uncertain stochastic nonlinear Markovian jump systems with time-varying delay via adaptive control method , 2011 .

[31]  Huijun Gao,et al.  Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach , 2014, Autom..

[32]  Hao Shen,et al.  Finite-time H∞ synchronization for complex networks with semi-Markov jump topology , 2015, Commun. Nonlinear Sci. Numer. Simul..

[33]  El-Kébir Boukas,et al.  Stochastic Switching Systems: Analysis and Design , 2005 .

[34]  Francesco Amato,et al.  Finite-time control of discrete-time linear systems: Analysis and design conditions , 2010, Autom..

[35]  Jun Song,et al.  Robust finite-time H∞ control for one-sided Lipschitz nonlinear systems via state feedback and output feedback , 2015, J. Frankl. Inst..

[36]  K. Narendra,et al.  Identification and Optimization of Aircraft Dynamics , 1973 .

[37]  Hamid Reza Karimi,et al.  Observer-based finite-time fuzzy H∞ control for discrete-time systems with stochastic jumps and time-delays , 2014, Signal Process..

[38]  Junfeng Chen,et al.  Robust delay-range-dependent non-fragile H∞ filtering for uncertain neutral stochastic systems with Markovian switching and mode-dependent time delays , 2015, J. Frankl. Inst..

[39]  Hao Shen,et al.  Finite-time reliable L 2 - Lα/Hα control for Takagi-Sugeno fuzzy systems with actuator faults , 2014 .

[40]  James Lam,et al.  Static output-feedback stabilization of discrete-time Markovian jump linear systems: A system augmentation approach , 2010, Autom..

[41]  Yonggui Kao,et al.  A sliding mode approach to H∞ non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems , 2015, Autom..

[42]  Yugang Niu,et al.  Stabilization of Markovian jump linear system over networks with random communication delay , 2009, Autom..

[43]  Yan Shi,et al.  Robust and non-fragile finite-time H∞ control for uncertain Markovian jump nonlinear systems , 2016, Appl. Math. Comput..

[44]  Francesco Amato,et al.  Finite‐time control of switching linear systems: The uncertain resetting times case , 2015 .

[45]  Wei Xing Zheng,et al.  Finite-time stochastic stabilisation of Markovian jump non-linear quadratic systems with partially known transition probabilities , 2014 .

[46]  Caixia Liu,et al.  Finite-time unbiased H∞ filtering for discrete jump time-delay systems , 2014 .