Science and technology of laser glass

Abstract There is an interplay between developments in glass technology leading to advances in lasers and the application of lasers to expand our knowledge and understanding of glass science. The current status and future prospects of various ions and host glasses for lasers and the extent to which laser parameters can be tailored by changing the chemical composition of the glass are surveyed first. The interplay between glass science and technology is illustrated further by considering the spectroscopic properties of rare earths in fused silica, where additions of co-dopants and ion clustering have large effects on local fields and optical spectra, and the operation of laser-pumped fiber lasers, where selective excitation due to site-to-site variations in the local field at the lasing ion can affect lasing characteristics. Current requirements for glasses for high power lasers, such as those used for inertial confinement fusion research, are also reviewed.

[1]  A. Negishi,et al.  Preparation of Nd−Al co-doped SiO2 glass by plasma torch CVD and its fluorescence properties , 1985 .

[2]  Kazuo Arai,et al.  Fluorescence and its Nd3+ Concentration Dependence of Nd-Doped SiO2 Glasses Prepared by Plasma Torch CVD , 1983 .

[3]  P. A. Tick,et al.  Nonlinear-optical properties of lead–tin fluorophosphate glass containing acridine dyes , 1987 .

[4]  E. Snitzer Rare earth fiber lasers , 1989 .

[5]  Robert L. Byer,et al.  Diode Laser—Pumped Solid-State Lasers , 1988, Science.

[6]  Steven T. Davey,et al.  Optical and structural investigation of Nd3+ in silica-based fibres , 1987 .

[7]  M. Weber Fluorescence and glass lasers , 1982 .

[8]  L. Cook,et al.  Multikilogram Fluoride Glass Synthesis , 1991 .

[9]  Stephen D. Jacobs,et al.  Ion-exchange strengthened phosphate laser glass: Development and applications , 1987 .

[10]  T. Soules Molecular dynamic calculations of glass structure and diffusion in glass , 1982 .

[11]  S. Poole,et al.  Line narrowing and spectral hole burning in single-mode Nd(3+)-fiber lasers. , 1987, Optics letters.

[12]  M. Weber,et al.  Molecular dynamics simulations of the structure of rare-earth-doped beryllium fluoride glasses , 1981 .

[13]  P. L. Lui,et al.  Measurement of intermodulation products generated by structural components , 1988 .

[14]  M. Weber,et al.  Site-dependent decay rates and fluorescence line narrowing of Mo/sup 3 +/ in phosphate glass , 1981 .

[15]  G . F. Albrecht,et al.  A high average power dual slab Nd:glass zigzag laser system , 1986 .

[16]  C. Brecher,et al.  Line-narrowed fluorescence spectra and site-dependent transition probabilities of Nd/sup 3 +/ in oxide and fluoride glasses , 1978 .

[17]  C. Brecher,et al.  Site-dependent variation of spectroscopic relaxation parameters in Nd glasses , 1979 .

[18]  C. Burrus,et al.  Neodymium‐doped silica lasers in end‐pumped fiber geometry , 1973 .

[19]  J. Holzrichter High-power solid-state lasers , 1985, Nature.

[20]  M. Weber Ab initio calculations of the optical properties of ions in glass , 1985 .

[21]  Norbert Neuroth,et al.  Laser Glass: Status And Prospects , 1987 .

[22]  Ralph R. Jacobs,et al.  Dependence of the 4 F 3/2 → 4 I 11/2 induced-emission cross section for Nd 3+ on glass composition , 1976 .

[23]  E. Snitzer Optical Maser Action of Nd + 3 in a Barium Crown Glass , 1961 .

[24]  J. Marion,et al.  Strengthened solid-state laser materials , 1985 .

[25]  J. Mackenzie,et al.  Nd-doped silica glass I: Structural evolution in the sol-gel state , 1988 .

[26]  W. Krupke,et al.  Spectral and polarization hole burning in neodymium glass lasers , 1983 .

[27]  John E. Marion,et al.  Fracture of solid state laser slabs , 1986 .

[28]  R. Wyatt,et al.  Optical and structural analysis of neodymium-doped silica-based optical fibre , 1989 .

[29]  D. Cronin,et al.  Dependence of the stimulated emission cross section of Yb 3+ on host glass composition , 1983 .

[30]  H. Rawson Inorganic Glass Forming Systems , 1967 .

[31]  R. Byer,et al.  40-W average power, 30-Hz moving-slab Nd:glass laser. , 1986, Optics letters.

[32]  Michael F. Weber,et al.  Monte Carlo Simulation of Eu^{3+}-Doped BeF_{2} Glass , 1980 .

[33]  G. L. Harnagel,et al.  Advances in diode laser pumps , 1988 .

[34]  William F. Krupke,et al.  Solid State Laser Driver for an ICF Reactor , 1989 .

[35]  W. J. Kozlovsky,et al.  Diode-pumped continuous-wave Nd:glass laser. , 1986, Optics letters.

[36]  L. I. Avakyants,et al.  Characteristics of laser glasses (review) , 1978 .

[37]  A. A. Shagov,et al.  Copper-doped alumoborosilicate glass: spectroscopic characteristics and stimulated emission , 1986 .

[38]  Strengthened phosphate glass in a high rep rate active-mirror amplifier geometry. , 1988, Applied optics.

[39]  D. W. Morgan,et al.  Preliminary ultraviolet transmission data for beryllium fluoride glasses , 1980 .

[40]  L. L. Hench,et al.  Gel-Silica Optics , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[41]  J. M. Pellegrino,et al.  Composition dependence of Nd3+ homogeneous linewidths in glasses , 1980 .

[42]  David C. Brown High-Peak-Power Nd: Glass Laser Systems , 1981 .

[43]  John E. Marion,et al.  Appropriate use of the strength parameter in solid-state slab laser design , 1987 .

[44]  Car,et al.  Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular dynamics study. , 1988, Physical review letters.

[45]  William F. Krupke,et al.  IN HONOR OF ACADEMICIAN N. G. BASOV'S SIXTIETH BIRTHDAY: Future development of high-power solid-state laser systems , 1983 .

[46]  William F. Krupke,et al.  Induced-emission cross sections in neodymium laser glasses , 1974 .

[47]  M. Weber,et al.  Modeling gain saturation in neodymium laser glasses , 1984 .

[48]  R. Saroyan,et al.  Optical properties of Nd3+ in metaphosphate glasses , 1981 .

[49]  H. J. Shaw,et al.  Broadband diode-pumped fibre laser , 1988 .

[50]  Steven T. Davey,et al.  The fabrication and optical properties of Nd3+ in silica-based optical fibres , 1987 .

[51]  R. Byer,et al.  Continuous-wave mode-locked Nd:glass laser pumped by a laser diode. , 1988, Optics letters.

[52]  G. W. Morey The Properties of Glass , 1939, Nature.

[53]  M. Weber,et al.  Comparison of optical spectra and computer-simulated structure of rare-earth-doped fluoroberyllate glasses , 1982 .

[54]  G. Boulon Luminescence in glassy and glass ceramic materials , 1987 .

[55]  Takashi Handa,et al.  Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass , 1986 .

[56]  Norihito Suzuki,et al.  Comparison of Multi-Beam and Single-Beam Cytofluorometers for an Automated Screening System in Gynecologic Cytology , 1983 .

[57]  V B Kravchenko,et al.  Phosphate laser glasses (review) , 1979 .

[58]  Marvin J. Weber,et al.  Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses , 1982 .