The Eigenvalues of Random Matrices
暂无分享,去创建一个
[1] Z. D. Bai,et al. Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .
[2] A. Zee,et al. Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .
[3] S. Péché. Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.
[4] H. Yau,et al. Universality of random matrices and local relaxation flow , 2009, 0907.5605.
[5] Mark Rudelson,et al. Invertibility of random matrices: Unitary and orthogonal perturbations , 2012, 1206.5180.
[6] T. Tao,et al. Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.
[7] J. Neumann,et al. Numerical inverting of matrices of high order , 1947 .
[8] L. Arnold,et al. On Wigner's semicircle law for the eigenvalues of random matrices , 1971 .
[9] S. Dallaporta. Eigenvalue variance bounds for covariance matrices , 2013, 1309.6265.
[10] A. Soshnikov. Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.
[11] Van Vu,et al. A note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner Matrices , 2011 .
[12] T. Tao,et al. Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.
[13] C. Bordenave,et al. The circular law , 2012 .
[14] B. Rider. A limit theorem at the edge of a non-Hermitian random matrix ensemble , 2003 .
[15] Jonas Gustavsson. Gaussian fluctuations of eigenvalues in the GUE , 2004 .
[16] Horng-Tzer Yau,et al. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.
[17] Exponential bounds for the support convergence in the Single Ring Theorem , 2014, 1409.3864.
[18] K. Wachter. The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .
[19] A. Horn. On the eigenvalues of a matrix with prescribed singular values , 1954 .
[20] Alexander Tikhomirov,et al. The circular law for random matrices , 2007, 0709.3995.
[21] Sean O'Rourke,et al. The Elliptic Law , 2012, 1208.5883.
[22] S. Péché,et al. Bulk universality for Wigner matrices , 2009, 0905.4176.
[23] Ofer Zeitouni,et al. Support convergence in the single ring theorem , 2010, 1012.2624.
[24] Madan Lal Mehta,et al. Random Matrices and the Statistical Theory of Energy Levels , 2014 .
[25] Wang Zhou,et al. Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..
[26] Van H. Vu,et al. Eigenvectors of random matrices: A survey , 2016, J. Comb. Theory A.
[27] Z. Bai. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .
[28] C. Tracy,et al. Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .
[29] Elizabeth Meckes,et al. The Random Matrix Theory of the Classical Compact Groups , 2019 .
[30] A. Hurwitz,et al. über die Erzeugung der Invarianten durch Integration , 1963 .
[31] E. Wigner. On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .
[32] The Elliptic Law: ten years later II , 1995 .
[33] M. Rudelson,et al. Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.
[34] H. Yau,et al. Local circular law for random matrices , 2012, 1206.1449.
[35] Horng-Tzer Yau,et al. Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.
[36] Z. Bai,et al. On the limit of the largest eigenvalue of the large dimensional sample covariance matrix , 1988 .
[37] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[38] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[39] F. Benaych-Georges. Local Single Ring Theorem , 2015, 1501.07840.
[40] V. L. GIRKO,et al. The Elliptic Law: ten years later I , 1995 .
[41] Terence Tao,et al. Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.
[42] M. Meckes,et al. Spectral measures of powers of random matrices , 2012, 1210.2681.
[43] Terence Tao,et al. Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.
[44] Ofer Zeitouni,et al. The single ring theorem , 2009, 0909.2214.
[45] J. Wishart. THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .
[46] Z. Bai,et al. Convergence to the Semicircle Law , 1988 .
[47] Z. Bai,et al. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .
[48] P. Diaconis,et al. On the eigenvalues of random matrices , 1994, Journal of Applied Probability.
[49] H. Weyl. Inequalities between the Two Kinds of Eigenvalues of a Linear Transformation. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[50] Y. Yin. Limiting spectral distribution for a class of random matrices , 1986 .