Segmental parameterisation and statistical modelling of e-mail headers for spam detection

[1]  Samuel T. Mayo,et al.  Statistical methods in education and psychology , 1979 .

[2]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[3]  L. R. Rabiner,et al.  Recognition of isolated digits using hidden Markov models with continuous mixture densities , 1985, AT&T Technical Journal.

[4]  NANCY SCHWEDA-NICHOLSON Notes and reports , 1986 .

[5]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[6]  Moni Naor,et al.  Pricing via Processing or Combatting Junk Mail , 1992, CRYPTO.

[7]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[8]  Vladimir Cherkassky,et al.  The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.

[9]  Ron Kohavi,et al.  The Case against Accuracy Estimation for Comparing Induction Algorithms , 1998, ICML.

[10]  Susan T. Dumais,et al.  A Bayesian Approach to Filtering Junk E-Mail , 1998, AAAI 1998.

[11]  Harris Drucker,et al.  Support vector machines for spam categorization , 1999, IEEE Trans. Neural Networks.

[12]  John McHugh,et al.  Testing Intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory , 2000, TSEC.

[13]  Georgios Paliouras,et al.  An evaluation of Naive Bayesian anti-spam filtering , 2000, ArXiv.

[14]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[15]  Georgios Paliouras,et al.  Learning to Filter Spam E-Mail: A Comparison of a Naive Bayesian and a Memory-Based Approach , 2000, ArXiv.

[16]  Peter W. Resnick,et al.  Internet Message Format , 2001, RFC.

[17]  José María Gómez Hidalgo,et al.  Evaluating cost-sensitive Unsolicited Bulk Email categorization , 2002, SAC '02.

[18]  John Ioannidis Fighting Spam by Encapsulating Policy in Email Addresses , 2003, NDSS.

[19]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[20]  Mads Haahr,et al.  A Case-Based Approach to Spam Filtering that Can Track Concept Drift , 2003 .

[21]  Georgios Paliouras,et al.  A Memory-Based Approach to Anti-Spam Filtering for Mailing Lists , 2004, Information Retrieval.

[22]  Yiming Yang,et al.  An Evaluation of Statistical Approaches to Text Categorization , 1999, Information Retrieval.

[23]  David C. Yen,et al.  Classification methods in the detection of new malicious emails , 2005, Inf. Sci..

[24]  Padraig Cunningham,et al.  An Assessment of Case-Based Reasoning for Spam Filtering , 2005, Artificial Intelligence Review.

[25]  Joel Scanlan,et al.  Catching spam before it arrives: domain specific dynamic blacklists , 2006, ACSW.

[26]  Rodrigo Roman,et al.  An anti-spam scheme using pre-challenges , 2006, Comput. Commun..

[27]  Blaz Zupan,et al.  Spam Filtering Using Statistical Data Compression Models , 2006, J. Mach. Learn. Res..

[28]  Eduardo Conde,et al.  An HMM for detecting spam mail , 2007, Expert Syst. Appl..

[29]  Chih-Chin Lai,et al.  An empirical study of three machine learning methods for spam filtering , 2007, Knowl. Based Syst..

[30]  D. Sculley,et al.  Relaxed online SVMs for spam filtering , 2007, SIGIR.

[31]  Irena Koprinska,et al.  Learning to classify e-mail , 2007, Inf. Sci..

[32]  Juan M. Corchado,et al.  SpamHunting: An instance-based reasoning system for spam labelling and filtering , 2007, Decis. Support Syst..

[33]  Chih-Chien Wang,et al.  Using header session messages to anti-spamming , 2007, Comput. Secur..

[34]  Farnam Jahanian,et al.  Shades of grey: On the effectiveness of reputation-based “blacklists” , 2008, 2008 3rd International Conference on Malicious and Unwanted Software (MALWARE).

[35]  Walmir M. Caminhas,et al.  A review of machine learning approaches to Spam filtering , 2009, Expert Syst. Appl..

[36]  D. Sculley,et al.  Going Mini: Extreme Lightweight Spam Filters , 2009 .

[37]  Yong Hu,et al.  A scalable intelligent non-content-based spam-filtering framework , 2010, Expert Syst. Appl..

[38]  Nizar Bouguila,et al.  A study of spam filtering using support vector machines , 2010, Artificial Intelligence Review.

[39]  Qinqing Ren Feature-Fusion Framework for Spam Filtering Based on SVM , 2010 .

[40]  Mishaal Abdullah Al-Kadhi Assessment of the status of spam in the Kingdom of Saudi Arabia , 2011, J. King Saud Univ. Comput. Inf. Sci..