A New Detail-Preserving Regularization Scheme

It is a challenging task to reconstruct images from their noisy, blurry, and/or incomplete measurements, especially those with important details and features such as medical magnetic resonance (MR) and CT images. We propose a novel regularization model that integrates two recently developed regularization tools: total generalized variation (TGV) by Bredies, Kunisch, and Pock; and shearlet transform by Labate, Lim, Kutyniok, and Weiss. The proposed model recovers both edges and fine details of images much better than the existing regularization models based on the total variation (TV) and wavelets. Specifically, while TV preserves sharp edges but suffers from oil painting artifacts, TGV “selectively regularizes” different image regions at different levels and thus largely avoids oil painting artifacts. Unlike the wavelet transform, which represents isotropic image features much more sparsely than anisotropic ones, the shearlet transform can efficiently represent anisotropic features such as edges, curves, ...

[1]  D. Donoho Sparse Components of Images and Optimal Atomic Decompositions , 2001 .

[2]  Tony F. Chan,et al.  Total Variation Wavelet Inpainting , 2006, Journal of Mathematical Imaging and Vision.

[3]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[4]  Stanley Osher,et al.  Hybrid regularization for mri reconstruction with static field inhomogeneity correction , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[5]  I. Selesnick Smooth Wavelet Tight Frames with Zero Moments , 2001 .

[6]  D. Labate,et al.  Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .

[7]  Wotao Yin,et al.  Edge Guided Reconstruction for Compressive Imaging , 2012, SIAM J. Imaging Sci..

[8]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[9]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[10]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[11]  Gitta Kutyniok,et al.  Shearlets: Multiscale Analysis for Multivariate Data , 2012 .

[12]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Bingsheng He,et al.  A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[15]  G. Easley,et al.  Sparse directional image representations using the discrete shearlet transform , 2008 .

[16]  Michael K. Ng,et al.  L0-Norm and Total Variation for Wavelet Inpainting , 2009, SSVM.

[17]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[18]  Raymond H. Chan,et al.  Alternating Direction Method for Image Inpainting in Wavelet Domains , 2011, SIAM J. Imaging Sci..

[19]  Xiaosheng Zhuang,et al.  ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm , 2011, SIAM J. Imaging Sci..

[20]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[21]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[22]  T. Chan,et al.  WAVELET INPAINTING BY NONLOCAL TOTAL VARIATION , 2010 .

[23]  D. Labate,et al.  The Construction of Smooth Parseval Frames of Shearlets , 2013 .

[24]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[25]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[26]  Joachim Weickert,et al.  Relations between Soft Wavelet Shrinkage and Total Variation Denoising , 2002, DAGM-Symposium.

[27]  Otmar Scherzer,et al.  Variational Methods on the Space of Functions of Bounded Hessian for Convexification and Denoising , 2005, Computing.

[28]  S. Osher,et al.  Image restoration: Total variation, wavelet frames, and beyond , 2012 .

[29]  L. Vese A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .

[30]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[31]  Jacques Froment,et al.  Reconstruction of Wavelet Coefficients Using Total Variation Minimization , 2002, SIAM J. Sci. Comput..

[32]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[33]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[34]  Hadeel N. Al-Taai,et al.  A Novel Fast Computing Method for Framelet Coefficients , 2008 .

[35]  Carola-Bibiane Schönlieb,et al.  A Combined First and Second Order Variational Approach for Image Reconstruction , 2012, Journal of Mathematical Imaging and Vision.

[36]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[37]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..