A New Detail-Preserving Regularization Scheme
暂无分享,去创建一个
Wotao Yin | Jing Qin | Weihong Guo | W. Yin | Jing Qin | Weihong Guo
[1] D. Donoho. Sparse Components of Images and Optimal Atomic Decompositions , 2001 .
[2] Tony F. Chan,et al. Total Variation Wavelet Inpainting , 2006, Journal of Mathematical Imaging and Vision.
[3] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[4] Stanley Osher,et al. Hybrid regularization for mri reconstruction with static field inhomogeneity correction , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).
[5] I. Selesnick. Smooth Wavelet Tight Frames with Zero Moments , 2001 .
[6] D. Labate,et al. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .
[7] Wotao Yin,et al. Edge Guided Reconstruction for Compressive Imaging , 2012, SIAM J. Imaging Sci..
[8] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[9] Wang-Q Lim,et al. Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.
[10] T. Pock,et al. Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.
[11] Gitta Kutyniok,et al. Shearlets: Multiscale Analysis for Multivariate Data , 2012 .
[12] E. Candès,et al. Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[13] Bingsheng He,et al. A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..
[14] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[15] G. Easley,et al. Sparse directional image representations using the discrete shearlet transform , 2008 .
[16] Michael K. Ng,et al. L0-Norm and Total Variation for Wavelet Inpainting , 2009, SSVM.
[17] Junfeng Yang,et al. A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.
[18] Raymond H. Chan,et al. Alternating Direction Method for Image Inpainting in Wavelet Domains , 2011, SIAM J. Imaging Sci..
[19] Xiaosheng Zhuang,et al. ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm , 2011, SIAM J. Imaging Sci..
[20] Arvid Lundervold,et al. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..
[21] Karl Kunisch,et al. Total Generalized Variation , 2010, SIAM J. Imaging Sci..
[22] T. Chan,et al. WAVELET INPAINTING BY NONLOCAL TOTAL VARIATION , 2010 .
[23] D. Labate,et al. The Construction of Smooth Parseval Frames of Shearlets , 2013 .
[24] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[25] Minh N. Do,et al. Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .
[26] Joachim Weickert,et al. Relations between Soft Wavelet Shrinkage and Total Variation Denoising , 2002, DAGM-Symposium.
[27] Otmar Scherzer,et al. Variational Methods on the Space of Functions of Bounded Hessian for Convexification and Denoising , 2005, Computing.
[28] S. Osher,et al. Image restoration: Total variation, wavelet frames, and beyond , 2012 .
[29] L. Vese. A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .
[30] D. Donoho,et al. Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.
[31] Jacques Froment,et al. Reconstruction of Wavelet Coefficients Using Total Variation Minimization , 2002, SIAM J. Sci. Comput..
[32] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[33] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[34] Hadeel N. Al-Taai,et al. A Novel Fast Computing Method for Framelet Coefficients , 2008 .
[35] Carola-Bibiane Schönlieb,et al. A Combined First and Second Order Variational Approach for Image Reconstruction , 2012, Journal of Mathematical Imaging and Vision.
[36] Stéphane Mallat,et al. A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .
[37] Wotao Yin,et al. On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..