Photonic band-gap inhibition of modulational instabilities.

Spatial structures as a result of a modulational instability are studied in a nonlinear cavity with a photonic crystal. The interaction of the modulated refractive index with the nonlinearity inhibits the instability via the creation of a photonic band gap. A novel mechanism of light localization due to defects and pattern inhibition is also described.

[1]  L. Lugiato,et al.  Cavity solitons as pixels in semiconductor microcavities , 2002, Nature.

[2]  Y. Kivshar,et al.  Nonlinear Photonic Crystals Toward All-Optical Technologies , 2002 .

[3]  Josselin Garnier,et al.  Modulational instability of electromagnetic waves in inhomogeneous and in discrete media , 2002 .

[4]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[5]  Fluctuations and correlations in hexagonal optical patterns. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Lugiato,et al.  Stationary spatial patterns in passive optical systems: Two-level atoms. , 1988, Physical review. A, General physics.

[7]  V. Berger,et al.  Nonlinear Photonic Crystals , 1998 .

[8]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[9]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[10]  Kestutis Staliunas,et al.  Midband dissipative spatial solitons. , 2003, Physical review letters.

[11]  Bose-Einstein condensates in spatially periodic potentials , 1998 .

[12]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[13]  Yuri S. Kivshar,et al.  Bose-Einstein condensates in optical lattices: Band-gap structure and solitons , 2003 .

[14]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[15]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[16]  W. Firth,et al.  Computationally determined existence and stability of transverse structures. I. Periodic optical patterns. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  M. Salerno,et al.  Modulational instability in Bose-Einstein condensates in optical lattices , 2002 .

[18]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[19]  Daniel Walgraef,et al.  Spatio-temporal pattern formation , 1996 .

[20]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[21]  William J. Firth,et al.  Cavity and Feedback Solitons , 2002 .

[22]  William J. Firth,et al.  Pattern formation in a passive Kerr cavity , 1994 .

[23]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[24]  Randall G. Hulet,et al.  Formation and propagation of matter-wave soliton trains , 2002, Nature.

[25]  Lugiato,et al.  Hexagonal patterns in optical bistability. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[26]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.