Understanding Nonradiative Recombination through Defect-Induced Conical Intersections.

Defects are known to introduce pathways for the nonradiative recombination of electronic excitations in semiconductors, but implicating a specific defect as a nonradiative center remains challenging for both experiment and theory. In this Perspective, we present recent progress toward this goal involving the identification and characterization of defect-induced conical intersections (DICIs), points of degeneracy between the ground and first excited electronic states of semiconductor materials that arise from the deformation of specific defects. Analysis of DICIs does not require the assumption of weak correlation between the electron and hole nor of stationary nuclei. It is demonstrated that in some cases an energetically accessible DICI is present even when no midgap state is predicted by single-particle theories (e.g., density functional theory). We review recent theoretical and computational developments that enable the location of DICIs in semiconductor nanomaterials and present insights into the photoluminescence of silicon nanocrystals gleaned from DICIs.

[1]  E. K. Hobbie,et al.  Origin of stretched-exponential photoluminescence relaxation in size-separated silicon nanocrystals , 2017 .

[2]  T. Martínez,et al.  α-CASSCF: An Efficient, Empirical Correction for SA-CASSCF To Closely Approximate MS-CASPT2 Potential Energy Surfaces. , 2017, The journal of physical chemistry letters.

[3]  Benjamin G. Levine,et al.  A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units. , 2017, The Journal of chemical physics.

[4]  Yinan Shu,et al.  Dual-Functional Tamm-Dancoff Approximation: A Convenient Density Functional Method that Correctly Describes S1/S0 Conical Intersections. , 2017, The journal of physical chemistry letters.

[5]  Michael Grätzel,et al.  The rapid evolution of highly efficient perovskite solar cells , 2017 .

[6]  E. Hohenstein,et al.  Improved Complete Active Space Configuration Interaction Energies with a Simple Correction from Density Functional Theory. , 2017, Journal of chemical theory and computation.

[7]  E. Hohenstein Analytic formulation of derivative coupling vectors for complete active space configuration interaction wavefunctions with floating occupation molecular orbitals. , 2016, The Journal of chemical physics.

[8]  Benjamin G. Levine,et al.  First-Principles Study of Nonradiative Recombination in Silicon Nanocrystals: The Role of Surface Silanol , 2016 .

[9]  Jaehoon Lim,et al.  Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. , 2016, Chemical reviews.

[10]  D. Kilin,et al.  Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives. , 2016, Accounts of chemical research.

[11]  Meng Zhou,et al.  Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law. , 2016, ACS nano.

[12]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[13]  Weitao Yang,et al.  Conical Intersections from Particle-Particle Random Phase and Tamm-Dancoff Approximations. , 2016, The journal of physical chemistry letters.

[14]  Benjamin G. Levine,et al.  Surface Structure and Silicon Nanocrystal Photoluminescence: The Role of Hypervalent Silyl Groups , 2015 .

[15]  T. Martínez,et al.  An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units. , 2015, Journal of Chemical Physics.

[16]  Benjamin G. Levine,et al.  Nanoscale multireference quantum chemistry: full configuration interaction on graphical processing units. , 2015, Journal of chemical theory and computation.

[17]  Benjamin G. Levine,et al.  Defect-Induced Conical Intersections Promote Nonradiative Recombination. , 2015, Nano letters.

[18]  Peter Pulay,et al.  Selection of active spaces for multiconfigurational wavefunctions. , 2015, The Journal of chemical physics.

[19]  S. Tretiak,et al.  Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. , 2015, Chemical reviews.

[20]  O. Prezhdo,et al.  Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces. , 2015, Annual review of physical chemistry.

[21]  G. Galli,et al.  Surface dangling bonds are a cause of B-type blinking in Si nanoparticles. , 2015, Nanoscale.

[22]  Benjamin G. Levine,et al.  Nonradiative Recombination via Conical Intersections Arising at Defects on the Oxidized Silicon Surface , 2015 .

[23]  Edward G Hohenstein,et al.  Configuration interaction singles natural orbitals: an orbital basis for an efficient and size intensive multireference description of electronic excited states. , 2015, The Journal of chemical physics.

[24]  M. Dasog,et al.  Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. , 2014, ACS nano.

[25]  Rebecca K. Carlson,et al.  Multiconfiguration Pair-Density Functional Theory. , 2014, Journal of chemical theory and computation.

[26]  Benjamin G. Levine,et al.  Do Excited Silicon–Oxygen Double Bonds Emit Light? , 2014 .

[27]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[28]  R. Zare,et al.  Hunt for geometric phase effects in H + HD → HD(v', j') + H. , 2013, The Journal of chemical physics.

[29]  Benjamin G. Levine,et al.  Communication: Non-radiative recombination via conical intersection at a semiconductor defect. , 2013, The Journal of chemical physics.

[30]  Massimo Olivucci,et al.  Toward an understanding of the retinal chromophore in rhodopsin mimics. , 2013, The journal of physical chemistry. B.

[31]  Benjamin G. Levine,et al.  Reducing the propensity for unphysical wavefunction symmetry breaking in multireference calculations of the excited states of semiconductor clusters. , 2013, The Journal of chemical physics.

[32]  F. Huisken,et al.  Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals , 2012 .

[33]  D. Yarkony,et al.  Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. , 2012, Annual review of physical chemistry.

[34]  S. Matsika,et al.  High-Multiplicity Natural Orbitals in Multireference Configuration Interaction for Excited States. , 2012, Journal of chemical theory and computation.

[35]  D. Yarkony,et al.  Nonadiabatic quantum chemistry--past, present, and future. , 2012, Chemical reviews.

[36]  M. Olivucci,et al.  Using the computer to understand the chemistry of conical intersections , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[37]  Christine M. Isborn,et al.  Excited-State Electronic Structure with Configuration Interaction Singles and Tamm–Dancoff Time-Dependent Density Functional Theory on Graphical Processing Units , 2011, Journal of chemical theory and computation.

[38]  T. Martínez,et al.  Ab initio floating occupation molecular orbital-complete active space configuration interaction: an efficient approximation to CASSCF. , 2010, The Journal of chemical physics.

[39]  U. Kortshagen,et al.  Charging, Coagulation, and Heating Model of Nanoparticles in a Low-Pressure Plasma Accounting for Ion–Neutral Collisions , 2010, IEEE Transactions on Plasma Science.

[40]  S. Ossicini,et al.  Ab-initio calculations of luminescence and optical gain properties in silicon nanostructures , 2009 .

[41]  M. Green,et al.  Impact of interface on the effective band gap of Si quantum dots , 2009 .

[42]  N. A. Deskins,et al.  Two pathways for water interaction with oxygen adatoms on TiO2(110). , 2009, Physical review letters.

[43]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation. , 2009, Journal of chemical theory and computation.

[44]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation. , 2008, Journal of chemical theory and computation.

[45]  Qin Wu,et al.  Configuration interaction based on constrained density functional theory: a multireference method. , 2007, The Journal of chemical physics.

[46]  N. Ferré,et al.  Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry , 2007, Proceedings of the National Academy of Sciences.

[47]  Benjamin G. Levine,et al.  Isomerization through conical intersections. , 2007, Annual review of physical chemistry.

[48]  M. Scheffler,et al.  Quasiparticle corrections to the electronic properties of anion vacancies at GaAs(110) and InP(110). , 2006, Physical review letters.

[49]  Uwe R. Kortshagen,et al.  Silicon nanocrystals with ensemble quantum yields exceeding 60 , 2006 .

[50]  Todd J. Martínez,et al.  Conical intersections and double excitations in time-dependent density functional theory , 2006 .

[51]  J. Valenta,et al.  Narrow luminescence linewidth of a silicon quantum dot. , 2005, Physical review letters.

[52]  S. Ossicini,et al.  Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in Si O 2 : Beyond the quantum confinement effect , 2005 .

[53]  J. Gräfenstein,et al.  Development of a CAS-DFT method covering non-dynamical and dynamical electron correlation in a balanced way , 2005 .

[54]  C. David Sherrill,et al.  Natural orbitals as substitutes for optimized orbitals in complete active space wavefunctions , 2004 .

[55]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[56]  J. Grossman,et al.  Computational studies of the optical emission of silicon nanocrystals. , 2003, Journal of the American Chemical Society.

[57]  P. Pellegrino,et al.  Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2 , 2003 .

[58]  Louis E. Brus,et al.  Electronic Structure and Luminescence of 1.1- and 1.4-nm Silicon Nanocrystals: Oxide Shell versus Hydrogen Passivation , 2003 .

[59]  C. Reynaud,et al.  Light‐Emitting Silicon Nanocrystals from Laser Pyrolysis , 2002 .

[60]  W. Fuß,et al.  Structure of the Conical Intersections Driving the cis–trans Photoisomerization of Conjugated Molecules¶ , 2002, Photochemistry and photobiology.

[61]  J. Chelikowsky,et al.  Surface oxidation effects on the optical properties of silicon nanocrystals , 2002 .

[62]  G. Granucci,et al.  Direct semiclassical simulation of photochemical processes with semiempirical wave functions , 2001 .

[63]  K. Freed,et al.  The improved virtual orbital-complete active space configuration interaction method, a “packageable” efficient ab initio many-body method for describing electronically excited states , 2001 .

[64]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[65]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[66]  Dennis R. Salahub,et al.  Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold , 1998 .

[67]  Luis Serrano-Andrés,et al.  The multi-state CASPT2 method , 1998 .

[68]  P. Fauchet,et al.  Quantum confinement in nanoscale silicon: The correlation of size with bandgap and luminescence , 1998 .

[69]  F. Bernardi,et al.  Potential energy surface crossings in organic photochemistry , 1997 .

[70]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[71]  D. Yarkony Diabolical conical intersections , 1996 .

[72]  J. McDouall,et al.  Combining Multiconfigurational Wave Functions with Density Functional Estimates of Dynamic Electron Correlation , 1996 .

[73]  H. Linke,et al.  Electron spin resonance investigations of oxidized porous silicon , 1993 .

[74]  Christophe Delerue,et al.  Electronic structure and optical properties of silicon crystallites: Application to porous silicon , 1992 .

[75]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[76]  Peter Pulay,et al.  The unrestricted natural orbital–complete active space (UNO–CAS) method: An inexpensive alternative to the complete active space–self‐consistent‐field (CAS–SCF) method , 1989 .

[77]  Kohn,et al.  Local density-functional theory of frequency-dependent linear response. , 1985, Physical review letters.

[78]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[79]  D. Lang,et al.  Nonradiative capture and recombination by multiphonon emission in GaAs and GaP , 1977 .

[80]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[81]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[82]  S. Pantelides,et al.  Optical gaps of free and embedded Si nanoclusters: Density functional theory calculations , 2010 .

[83]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .