Automorphism group of a polynomial ring and algebraic group action on an affine space
暂无分享,去创建一个
[1] D. Wright. The amalgamated free product structure of GL2(k[X1,…,Xn]) and the weak Jacobian theorem for two variables , 1978 .
[2] H. Bass,et al. Locally polynomial algebras are symmetric algebras , 1976 .
[3] D. Wright. The amalgamated free product structure of ${\text{GL}}_2 \left( {K\left[ {X_1 , \cdots ,X_n } \right]} \right)$ , 1976 .
[4] T. Kambayashi. On the absence of nontrivial separable forms of the affine plane , 1975 .
[5] A. Mader,et al. The structure of the automorphism group of polynomial rings , 1973 .
[6] M. Brynski. Forms of the rings R[X] and R[X, Y] , 1972, Glasgow Mathematical Journal.
[7] M. Miyanishi. Ga -Action of the Affine Plane , 1971, Nagoya Mathematical Journal.
[8] A. Gutwirth. THE ACTION OF AN ALGEBRAIC TORUS ON THE AFFINE PLANE , 1962 .
[9] Masayoshi Nagata,et al. On automorphism group of k[x, y] , 1972 .
[10] A. Białynicki-Birula. Remarks on the action of an algebraic torus on kn. II , 1966 .
[11] Heinrich W. E. Jung. Über ganze birationale Transformationen der Ebene. , 1942 .