A probabilistic ranking framework using unobservable binary events for video search

Recent content-based video retrieval systems combine output of concept detectors (also known as high-level features) with text obtained through automatic speech recognition. This paper concerns the problem of search using the noisy concept detector output only. Unlike term occurrence in text documents, the event of the occurrence of an audiovisual concept is only indirectly observable. We develop a probabilistic ranking framework for unobservable binary events to search in videos, called PR-FUBE. The framework explicitly models the probability of relevance of a video shot through the presence and absence of concepts. From our framework, we derive a ranking formula and show its relationship to previously proposed formulas. We evaluate our framework against two other retrieval approaches using the TRECVID 2005 and 2007 datasets. Especially using large numbers of concepts in retrieval results in good performance. We attribute the observed robustness against the noise introduced by less related concepts to the effective combination of concept presence and absence in our method. The experiments show that an accurate estimate for the probability of occurrence of a particular concept in relevant shots is crucial to obtain effective retrieval results.

[1]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[2]  Nicu Sebe,et al.  The State of the Art in Image and Video Retrieval , 2003, CIVR.

[3]  Meng Wang,et al.  MSRA-USTC-SJTU at TRECVID 2007: High-Level Feature Extraction and Search , 2007, TRECVID.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 1 , 2000, Inf. Process. Manag..

[6]  Graeme Hirst,et al.  Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures , 2004 .

[7]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[8]  Djoerd Hiemstra,et al.  The Effectiveness of Concept Based Search for Video Retrieval , 2007, LWA.

[9]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[10]  Norbert Fuhr,et al.  Probabilistic Models in Information Retrieval , 1992, Comput. J..

[11]  Ellen M. Voorhees,et al.  The TREC Spoken Document Retrieval Track: A Success Story , 2000, TREC.

[12]  Thomas Hofmann,et al.  Probabilistic latent semantic indexing , 1999, SIGIR '99.

[13]  Bo Zhang,et al.  Using High-Level Semantic Features in Video Retrieval , 2006, CIVR.

[14]  S. Robertson The probability ranking principle in IR , 1997 .

[15]  John Adcock,et al.  FXPAL Interactive Search Experiments for TRECVID 2007 , 2007, TRECVID.

[16]  Chong-Wah Ngo,et al.  Towards optimal bag-of-features for object categorization and semantic video retrieval , 2007, CIVR '07.

[17]  Alexander G. Hauptmann,et al.  LSCOM Lexicon Definitions and Annotations (Version 1.0) , 2006 .

[18]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 2 , 2000, Inf. Process. Manag..

[19]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[20]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[21]  Djoerd Hiemstra,et al.  PFTijah: text search in an XML database system , 2006 .

[22]  C. Fellbaum An Electronic Lexical Database , 1998 .

[23]  Rong Yan,et al.  Probabilistic models for combining diverse knowledge sources in multimedia retrieval , 2006 .

[24]  Djoerd Hiemstra,et al.  Building Detectors to Support Searches on Combined Semantic Concepts , 2007 .

[25]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[26]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[27]  Willemijn Heeren,et al.  Evaluating ASR Output for Information Retrieval , 2007, SIGIR 2007.

[28]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .