Evolutionary dynamic multi-objective optimization algorithm based on Borda count method

[1]  Wei Zhang,et al.  Dynamic multi-objective optimization control for wastewater treatment process , 2018, Neural Computing and Applications.

[2]  Min Liu,et al.  A dynamic evolutionary multi-objective optimization algorithm based on decomposition and adaptive diversity introduction , 2016, 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).

[3]  Andries Petrus Engelbrecht,et al.  Key challenges and future directions of dynamic multi-objective optimisation , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[4]  Dun-Wei Gong,et al.  Cooperative Co-evolutionary Algorithm for Dynamic Multi-objective Optimization Based on Environmental Variable Grouping , 2016, ICSI.

[5]  Licheng Jiao,et al.  An orthogonal predictive model-based dynamic multi-objective optimization algorithm , 2015, Soft Comput..

[6]  Yaochu Jin,et al.  A directed search strategy for evolutionary dynamic multiobjective optimization , 2014, Soft Computing.

[7]  Bin Li,et al.  Multiobjective biogeography based optimization algorithm with decomposition for community detection in dynamic networks , 2015 .

[8]  Andries Petrus Engelbrecht,et al.  Using Headless Chicken Crossover for Local Guide Selection When Solving Dynamic Multi-objective Optimization , 2015, NaBIC.

[9]  L. Jiao,et al.  Integration of improved predictive model and adaptive differential evolution based dynamic multi-objective evolutionary optimization algorithm , 2015, Applied Intelligence.

[10]  Licheng Jiao,et al.  A novel cooperative coevolutionary dynamic multi-objective optimization algorithm using a new predictive model , 2014, Soft Comput..

[11]  Andries Petrus Engelbrecht,et al.  Heterogeneous dynamic vector evaluated particle swarm optimisation for dynamic multi-objective optimisation , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[12]  L. Jiao,et al.  Quantum immune clonal coevolutionary algorithm for dynamic multiobjective optimization , 2014, Soft Comput..

[13]  Yu-Jun Zheng,et al.  Population Classification in Fire Evacuation: A Multiobjective Particle Swarm Optimization Approach , 2014, IEEE Transactions on Evolutionary Computation.

[14]  Qingfu Zhang,et al.  A Population Prediction Strategy for Evolutionary Dynamic Multiobjective Optimization , 2014, IEEE Transactions on Cybernetics.

[15]  Andries Petrus Engelbrecht,et al.  Performance measures for dynamic multi-objective optimisation algorithms , 2013, Inf. Sci..

[16]  Qin Song,et al.  Multiobjective fireworks optimization for variable-rate fertilization in oil crop production , 2013, Appl. Soft Comput..

[17]  Kay Chen Tan,et al.  Dynamic Multiobjective Optimization Using Evolutionary Algorithm with Kalman Filter , 2013 .

[18]  Andries Petrus Engelbrecht,et al.  Dynamic Multi-Objective Optimization Using PSO , 2013, Metaheuristics for Dynamic Optimization.

[19]  一将 白髪,et al.  捕食者被食者の関係を導入したHeterogeneous Particle Swarm Optimization , 2012 .

[20]  Marde Helbig,et al.  Solving dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation , 2012 .

[21]  Andries Petrus Engelbrecht,et al.  Analyses of guide update approaches for vector evaluated particle swarm optimisation on dynamic multi-objective optimisation problems , 2012, 2012 IEEE Congress on Evolutionary Computation.

[22]  Andries Petrus Engelbrecht,et al.  Archive management for dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[23]  Kay Chen Tan,et al.  A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment , 2010, Memetic Comput..

[24]  Julio Ortega Lopera,et al.  A single front genetic algorithm for parallel multi-objective optimization in dynamic environments , 2009, Neurocomputing.

[25]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[26]  Zikrija Avdagic,et al.  Evolutionary Approach to Solving Non-stationary Dynamic Multi-Objective Problems , 2009, Foundations of Computational Intelligence.

[27]  Yuping Wang,et al.  An evolutionary algorithm for dynamic multi-objective optimization , 2008, Appl. Math. Comput..

[28]  Jiangye Yuan,et al.  A modified particle swarm optimizer with dynamic adaptation , 2007, Appl. Math. Comput..

[29]  Julio Ortega Lopera,et al.  Parallel Processing for Multi-objective Optimization in Dynamic Environments , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[30]  Kalyanmoy Deb,et al.  Dynamic Multi-objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling , 2007, EMO.

[31]  Qingfu Zhang,et al.  Prediction-Based Population Re-initialization for Evolutionary Dynamic Multi-objective Optimization , 2007, EMO.

[32]  Kay Chen Tan,et al.  An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[33]  David Wallace,et al.  Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach , 2006, GECCO.

[34]  Xiaodong Li,et al.  Particle swarm with speciation and adaptation in a dynamic environment , 2006, GECCO.

[35]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[36]  Hamid R. Tizhoosh,et al.  Opposition-Based Learning: A New Scheme for Machine Intelligence , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[37]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[38]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[39]  Raimo P. Hämäläinen,et al.  Dynamic multi-objective heating optimization , 2002, Eur. J. Oper. Res..

[40]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[41]  M. Farina A Minimal Cost Hybrid Strategy for Pareto Optimal Front Approximation , 2002 .

[42]  HA RAIMOP. A Dynamic Interval Goal Programming Approach to the Regulation of a Lake – River System , 2001 .

[43]  Ivo F. Sbalzariniy,et al.  Multiobjective optimization using evolutionary algorithms , 2000 .

[44]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[45]  Donald G. Saari,et al.  The Optimal Ranking Method is the Borda Count , 1985 .