A Plasmodium membrane receptor platform integrates cues for egress and invasion in blood forms and activation of transmission stages

Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.

[1]  Shukun Luo,et al.  Characterizing the Specific Recognition of Xanthurenic Acid by GEP1 and GEP1-GCα Interactions in cGMP Signaling Pathway in Gametogenesis of Malaria Parasites , 2023, International journal of molecular sciences.

[2]  D. Soldati-Favre,et al.  A Signaling Factor Linked to Toxoplasma gondii Guanylate Cyclase Complex Controls Invasion and Egress during Acute and Chronic Infection , 2022, mBio.

[3]  M. Meissner,et al.  A splitCas9 phenotypic screen in Toxoplasma gondii identifies proteins involved in host cell egress and invasion , 2022, Nature Microbiology.

[4]  M. Blackman,et al.  CDC50 Orthologues in Plasmodium falciparum Have Distinct Roles in Merozoite Egress and Trophozoite Maturation , 2022, bioRxiv.

[5]  D. Soldati-Favre,et al.  Toxoplasma gondii phosphatidylserine flippase complex ATP2B-CDC50.4 critically participates in microneme exocytosis , 2021, bioRxiv.

[6]  S. Howell,et al.  Ca2+ signals critical for egress and gametogenesis in malaria parasites depend on a multipass membrane protein that interacts with PKG , 2021, Science Advances.

[7]  M. Brochet,et al.  cGMP homeostasis in malaria parasites—The key to perceiving and integrating environmental changes during transmission to the mosquito , 2020, Molecular microbiology.

[8]  M. Blackman,et al.  Plasmodium falciparum Guanylyl Cyclase-Alpha and the Activity of Its Appended P4-ATPase Domain Are Essential for cGMP Synthesis and Blood-Stage Egress , 2020, mBio.

[9]  John H. Abel,et al.  The malaria parasite has an intrinsic clock , 2020, Science.

[10]  Robert R. Nerem,et al.  An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum , 2020, Science.

[11]  X. Su,et al.  An intracellular membrane protein GEP1 regulates xanthurenic acid induced gametogenesis of malaria parasites , 2020, Nature Communications.

[12]  S. Gygi,et al.  Co-option of Plasmodium falciparum PP1 for egress from host erythrocytes , 2020, Nature Communications.

[13]  D. Soldati-Favre,et al.  Phosphatidic acid governs natural egress in Toxoplasma gondii via a guanylate cyclase receptor platform , 2019, Nature Microbiology.

[14]  M. Blackman,et al.  Phosphodiesterase beta is the master regulator of cAMP signalling during malaria parasite invasion , 2019, PLoS biology.

[15]  K. Brown,et al.  Essential cGMP Signaling in Toxoplasma Is Initiated by a Hybrid P-Type ATPase-Guanylate Cyclase. , 2018, Cell host & microbe.

[16]  J. Baum,et al.  Epistasis studies reveal redundancy among calcium-dependent protein kinases in motility and invasion of malaria parasites , 2018, Nature Communications.

[17]  X. Su,et al.  ISP1-Anchored Polarization of GCβ/CDC50A Complex Initiates Malaria Ookinete Gliding Motility , 2018, Current Biology.

[18]  E. Derivery,et al.  A Fluorescent Membrane Tension Probe , 2018, Nature Chemistry.

[19]  L. Collinson,et al.  The Actinomyosin Motor Drives Malaria Parasite Red Blood Cell Invasion but Not Egress , 2018, mBio.

[20]  J. Rayner,et al.  Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis , 2018, Science.

[21]  M. Sumitani,et al.  Malaria infectivity of xanthurenic acid-deficient anopheline mosquitoes produced by TALEN-mediated targeted mutagenesis , 2018, Transgenic Research.

[22]  K. Segawa,et al.  The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane , 2017, The Journal of Biological Chemistry.

[23]  D. Baker,et al.  Cyclic nucleotide signalling in malaria parasites , 2017, Open Biology.

[24]  S. Croft,et al.  A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission , 2017, Nature Communications.

[25]  J. Rayner,et al.  Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes , 2017, Cell.

[26]  A. Holder,et al.  Generating conditional gene knockouts in Plasmodium – a toolkit to produce stable DiCre recombinase-expressing parasite lines using CRISPR/Cas9 , 2017, Scientific Reports.

[27]  J. Choudhary,et al.  Multiple short windows of calcium-dependent protein kinase 4 activity coordinate distinct cell cycle events during Plasmodium gametogenesis , 2017, eLife.

[28]  U. Hohmann,et al.  The Structural Basis of Ligand Perception and Signal Activation by Receptor Kinases. , 2017, Annual review of plant biology.

[29]  G. Pradel,et al.  The development of malaria parasites in the mosquito midgut , 2016, Cellular microbiology.

[30]  O. Billker,et al.  Calcium signalling in malaria parasites , 2016, Molecular microbiology.

[31]  D. Marsh,et al.  Comparison of Methodologies to Detect Low Levels of Hemolysis in Serum for Accurate Assessment of Serum microRNAs , 2016, PloS one.

[32]  Kelly V. Ruggles,et al.  Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum. , 2015, Cell host & microbe.

[33]  N. Philip,et al.  Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector , 2015, Cell host & microbe.

[34]  S. Briolant,et al.  Use of Plasmodium falciparum culture-adapted field isolates for in vitro exflagellation-blocking assay , 2015, Malaria Journal.

[35]  R. Sinden,et al.  Imaging-Based High-Throughput Screening Assay To Identify New Molecules with Transmission-Blocking Potential against Plasmodium falciparum Female Gamete Formation , 2015, Antimicrobial Agents and Chemotherapy.

[36]  V. Carruthers,et al.  Acidification Activates Toxoplasma gondii Motility and Egress by Enhancing Protein Secretion and Cytolytic Activity , 2014, PLoS pathogens.

[37]  Terry K. Smith,et al.  Phosphoinositide Metabolism Links cGMP-Dependent Protein Kinase G to Essential Ca2+ Signals at Key Decision Points in the Life Cycle of Malaria Parasites , 2014, PLoS biology.

[38]  M. Strath,et al.  Malaria Parasite cGMP-dependent Protein Kinase Regulates Blood Stage Merozoite Secretory Organelle Discharge and Egress , 2013, PLoS pathogens.

[39]  R. Sinden,et al.  Male and Female Plasmodium falciparum Mature Gametocytes Show Different Responses to Antimalarial Drugs , 2013, Antimicrobial Agents and Chemotherapy.

[40]  S. Müller,et al.  Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle , 2013, Molecular microbiology.

[41]  F. Dias,et al.  The Antioxidant Role of Xanthurenic Acid in the Aedes aegypti Midgut during Digestion of a Blood Meal , 2012, PloS one.

[42]  L. R. Potter,et al.  Guanylyl cyclase structure, function and regulation. , 2011, Cellular signalling.

[43]  J. Rayner,et al.  A scalable pipeline for highly effective genetic modification of a malaria parasite , 2011, Nature Methods.

[44]  D. Baker,et al.  Cyclic nucleotide signalling in malaria parasites , 2011, Cellular microbiology.

[45]  Oliver Billker,et al.  A Cyclic GMP Signalling Module That Regulates Gliding Motility in a Malaria Parasite , 2009, PLoS pathogens.

[46]  J. Klar,et al.  Cyclic nucleotide-specific phosphodiesterases of Plasmodium falciparum: PfPDEalpha, a non-essential cGMP-specific PDE that is an integral membrane protein. , 2008, International journal for parasitology.

[47]  L. McRobert,et al.  Gametogenesis in Malaria Parasites Is Mediated by the cGMP-Dependent Protein Kinase , 2008, PLoS biology.

[48]  L. McRobert,et al.  Disruption of a Plasmodium falciparum cyclic nucleotide phosphodiesterase gene causes aberrant gametogenesis , 2008, Molecular microbiology.

[49]  A. Olivieri,et al.  The role of osmiophilic bodies and Pfg377 expression in female gametocyte emergence and mosquito infectivity in the human malaria parasite Plasmodium falciparum , 2007, Molecular microbiology.

[50]  S. Sharp,et al.  Improved synchronous production of Plasmodium falciparum gametocytes in vitro. , 2007, Molecular and biochemical parasitology.

[51]  T. Mascher,et al.  Stimulus Perception in Bacterial Signal-Transducing Histidine Kinases , 2006, Microbiology and Molecular Biology Reviews.

[52]  J. Kotera,et al.  PfPDE1, a novel cGMP-specific phosphodiesterase from the human malaria parasite Plasmodium falciparum. , 2005, The Biochemical journal.

[53]  Stefan Offermanns,et al.  Mammalian G proteins and their cell type specific functions. , 2005, Physiological reviews.

[54]  D. Baker,et al.  Structure, function and evolution of microbial adenylyl and guanylyl cyclases , 2004, Molecular microbiology.

[55]  R. Tewari,et al.  Calcium and a Calcium-Dependent Protein Kinase Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite , 2004, Cell.

[56]  S. Baldauf,et al.  The Deep Roots of Eukaryotes , 2003, Science.

[57]  D. Baker,et al.  The gametocyte‐activating factor xanthurenic acid stimulates an increase in membrane‐associated guanylyl cyclase activity in the human malaria parasite Plasmodium falciparum , 2001, Molecular microbiology.

[58]  R. Sinden,et al.  Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito. , 2001, Molecular and biochemical parasitology.

[59]  J. Schlessinger,et al.  Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[60]  R. Sinden,et al.  Determination of mosquito bloodmeal pH in situ by ion-selective microelectrode measurement: implications for the regulation of malarial gametogenesis , 2000, Parasitology.

[61]  R. Rosenberg,et al.  Xanthurenic Acid Induces Gametogenesis in Plasmodium, the Malaria Parasite* , 1998, The Journal of Biological Chemistry.

[62]  R. Sinden,et al.  Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito , 1998, Nature.

[63]  R. Sinden,et al.  The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro , 1997, Parasitology.

[64]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.

[65]  R. Carter,et al.  COS cell expression cloning of Pfg377, a Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies. , 1995, Molecular and biochemical parasitology.

[66]  R. Sinden,et al.  Sexual development in malarial parasites: gametocyte production, fertility and infectivity to the mosquito vector , 1990, Parasitology.

[67]  R. Sinden The cell biology of sexual development in Plasmodium , 1983, Parasitology.

[68]  W. King ON THE DEVELOPMENT OF MALARIA PARASITES IN THE MOSQUITO , 1929 .

[69]  J. Rayner,et al.  Recombination-mediated genetic engineering of Plasmodium berghei DNA. , 2013, Methods in molecular biology.

[70]  J. Kotera,et al.  PfPDE 1 , a novel cGMP-specific phosphodiesterase from the human malaria parasite Plasmodium falciparum , 2005 .

[71]  J. Schlessinger,et al.  Signaling by Receptor Tyrosine Kinases , 1993 .