FIR filter design using Multiobjective Artificial Bee Colony algorithm

In this paper, general FIR filters are designed using multiobjective Artificial Bee Colony algorithm. Spherical pruning (SP) and physical programming (PP) techniques are combined together in the implementation of multiobjective Artificial Bee Colony algorithm. Physical programming converts the design objectives into an intuitive language and spherical pruning maintains diversity in the Pareto front. The design of general FIR filters require simultaneous optimization of magnitude and group delay errors and therefore can be formulated as a Multiobjective Optimization (MOO) problem. All the non-dominated solutions of the general FIR design problem can be approximated into a Pareto front. Numerical results show that, multiobjective Artificial Bee Colony algorithm can achieve lower passband, stopband, group delay errors when compared to those of spherical pruning Multiobjective Differential Evolution (spMODE-II).

[1]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[2]  Dervis Karaboga,et al.  Artificial bee colony algorithm , 2010, Scholarpedia.

[3]  Lei Sun,et al.  Multi-objective optimization of extreme learning machine using physical programming , 2016, CCC 2016.

[4]  Reza Akbari,et al.  A multi-objective artificial bee colony algorithm , 2012, Swarm Evol. Comput..

[5]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[6]  Manoj Kumar Tiwari,et al.  Interactive Particle Swarm: A Pareto-Adaptive Metaheuristic to Multiobjective Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[7]  B. Durmus,et al.  IIR filter design using incremental artificial bee colony with powell's CDS , 2012, 2012 International Symposium on Innovations in Intelligent Systems and Applications.

[8]  Hon Keung Kwan,et al.  Minimax design of linear phase FIR differentiators using artificial bee colony algorithm , 2016, 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP).

[9]  Xiaoping Lai,et al.  Optimal Design of Nonlinear-Phase FIR Filters With Prescribed Phase Error , 2009, IEEE Transactions on Signal Processing.

[10]  Andreas Antoniou,et al.  Improved Design Method for Nearly Linear-Phase IIR Filters Using Constrained Optimization , 2013, IEEE Transactions on Signal Processing.

[11]  Jay Prakash,et al.  NSABC: Non-dominated sorting based multi-objective artificial bee colony algorithm and its application in data clustering , 2016, Neurocomputing.

[12]  Sanjit K. Mitra,et al.  Digital Signal Processing: A Computer-Based Approach , 1997 .

[13]  Xavier Blasco Ferragud,et al.  Modelling preferences in multi-objective engineering design , 2010, Eng. Appl. Artif. Intell..

[14]  S. N. Omkar,et al.  Applied Soft Computing Artificial Bee Colony (abc) for Multi-objective Design Optimization of Composite Structures , 2022 .

[15]  Bin Li,et al.  Fixed-point digital IIR filter design using multi-objective optimization evolutionary algorithm , 2010, 2010 IEEE Youth Conference on Information, Computing and Telecommunications.

[16]  Gexiang Zhang,et al.  Quantum evolutionary algorithm for multi-objective optimization problems , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[17]  A. Antoniou Digital Signal Processing: Signals, Systems, and Filters , 2005 .

[18]  Xavier Blasco Ferragud,et al.  Physical programming for preference driven evolutionary multi-objective optimization , 2014, Appl. Soft Comput..

[19]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[20]  Elizabeth Elias,et al.  A novel design and implementation technique for low complexity variable digital filters using multi-objective artificial bee colony optimization and a minimal spanning tree approach , 2017, Eng. Appl. Artif. Intell..

[21]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[22]  Zhenyu Liu,et al.  A method of SVM with Normalization in Intrusion Detection , 2011 .

[23]  Xavier Blasco Ferragud,et al.  Multiobjective optimization algorithm for solving constrained single objective problems , 2010, IEEE Congress on Evolutionary Computation.

[24]  Katinka Wolter,et al.  A Multiobjective Artificial Bee Colony Algorithm based on Decomposition , 2019, IJCCI.

[25]  Zhiping Lin,et al.  Design of Complex FIR Filters With Reduced Group Delay Error Using Semidefinite Programming , 2006, IEEE Signal Processing Letters.

[26]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[27]  Tania Stathaki,et al.  Equiripple minimum phase FIR filter design from linear phase systems using root moments , 2001 .