Optimal admissible composition of abstraction heuristics

Additive ensembles of admissible heuristics constitute the most general form of exploiting the individual strengths of numerous admissible heuristics in optimal planning. However, the same set of heuristics can be additively composed in infinitely many ways and the quality of the resulting heuristic estimate depends directly on the choice of the composition. Focusing on abstraction heuristics, we describe a procedure that takes a deterministic planning problem, a forward-search state, and a set of abstraction-based admissible heuristics, and derives an optimal additive composition of these heuristics with respect to the given state. Most importantly, we show that this procedure is polynomial-time for arbitrary sets of all abstraction heuristics with which we are acquainted, including explicit abstractions such as pattern databases (regular or constrained) and merge-and-shrink, and implicit abstractions such as fork-decomposition and abstractions based on tractable constraint optimization over tree-shaped constraint networks.

[1]  Carmel Domshlak,et al.  Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? , 2009, ICAPS.

[2]  Stefan Edelkamp,et al.  Automated Creation of Pattern Database Search Heuristics , 2007, MoChArt.

[3]  Carmel Domshlak,et al.  New Islands of Tractability of Cost-Optimal Planning , 2008, J. Artif. Intell. Res..

[4]  Carmel Domshlak,et al.  Friends or Foes? On Planning as Satisfiability and Abstract CNF Encodings , 2009, J. Artif. Intell. Res..

[5]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[6]  Patrik Haslum,et al.  Admissible Heuristics for Optimal Planning , 2000, AIPS.

[7]  Patrik Haslum,et al.  Flexible Abstraction Heuristics for Optimal Sequential Planning , 2007, ICAPS.

[8]  Andrew Coles,et al.  Additive-Disjunctive Heuristics for Optimal Planning , 2008, ICAPS.

[9]  R. Holte Psvn: a V Ector Representation for Production Systems Psvn: a Vector Representation for Production Systems , 1999 .

[10]  Patrik Haslum,et al.  New Admissible Heuristics for Domain-Independent Planning , 2005, AAAI.

[11]  Fan Yang,et al.  A General Additive Search Abstraction , 2007 .

[12]  Bernhard Nebel,et al.  COMPLEXITY RESULTS FOR SAS+ PLANNING , 1995, Comput. Intell..

[13]  Carmel Domshlak,et al.  Structural-Pattern Databases , 2009, ICAPS.

[14]  A. Prieditis Machine Discovery of Effective Admissible Heuristics , 1991, IJCAI 1991.

[15]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[16]  Erez Karpas,et al.  Sensible Agent Technology Improving Coordination and Communication in Biosurveillance Domains , 2009, IJCAI.

[17]  Fan Yang,et al.  A General Theory of Additive State Space Abstractions , 2008, J. Artif. Intell. Res..

[18]  Jordi Castro,et al.  An interior-point approach for primal block-angular problems , 2007, Comput. Optim. Appl..

[19]  Malte Helmert,et al.  Landmarks Revisited , 2008, AAAI.

[20]  Patrik Haslum,et al.  Domain-Independent Construction of Pattern Database Heuristics for Cost-Optimal Planning , 2007, AAAI.

[21]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[22]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[23]  Stefan Edelkamp,et al.  Symbolic Pattern Databases in Heuristic Search Planning , 2002, AIPS.

[24]  Malte Helmert,et al.  Accuracy of Admissible Heuristic Functions in Selected Planning Domains , 2008, AAAI.

[25]  Richard E. Korf,et al.  Additive Pattern Database Heuristics , 2004, J. Artif. Intell. Res..

[26]  Bernd Finkbeiner,et al.  Directed model checking with distance-preserving abstractions , 2006, International Journal on Software Tools for Technology Transfer.

[27]  Carmel Domshlak,et al.  Structural Patterns Heuristics via Fork Decomposition , 2008, ICAPS.

[28]  Subbarao Kambhampati,et al.  An LP-Based Heuristic for Optimal Planning , 2007, CP.

[29]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[30]  Jonathan Schaeffer,et al.  Pattern Databases , 1998, Comput. Intell..