Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules

We discuss a robotic system composed of Crystalline modules. Crystalline modules can aggregate together to form distributed robot systems. Crystalline modules can move relative to each other by expanding and contracting. This actuation mechanism permits automated shape metamorphosis. We describe the Crystalline module concept and show the basic motions that enable a Crystalline robot system to self-reconfigure. We present an algorithm for general self-reconfiguration and describe simulation experiments.

[1]  Toshio Fukuda,et al.  Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[2]  Daniela Rus New Directions: Self-Reconfiguring Robots , 1998, IEEE Intell. Syst..

[3]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[4]  Marsette Vona,et al.  A physical implementation of the self-reconfiguring crystalline robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[5]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[6]  Christiaan J. J. Paredis,et al.  Design of modular fault tolerant manipulators , 1995 .

[7]  Marsette Vona,et al.  Self-reconfiguration planning with compressible unit modules , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[8]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule: design and control algorithms , 1998 .

[9]  Eiichi Yoshida,et al.  Reconfiguration Method for a Distributed Mechanical System , 1996 .

[10]  Eiichi Yoshida,et al.  Distributed formation control for a modular mechanical system , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[11]  R. Cohen,et al.  Conceptual Design of a Modular Robot , 1992 .

[12]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..

[13]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[14]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[15]  Isao Shimoyama,et al.  Dynamics of self-assembling systems: Analogy with chemical kinetics , 1994 .

[16]  G. Chirikjian,et al.  Evaluating efficiency of self-reconfiguration in a class of modular robots , 1996 .