An improved method for progressive animation models generation

In computer graphics, animated models are widely used to represent time-varying data. And the progressive representation of such models can accelerate the speed of processing, transmission and storage. In this paper, we propose an efficient method to generate progressive animation models. Our method uses an improved curvature sensitive quadric error metric (QEM) criterion as basic measurement, which can preserve more local features on the surface. We append a deformation weight to the aggregated edge contraction cost during the whole animation to preserve more motion features. At last, we introduce a mesh optimization method for the animation sequence, which can efficiently improve the temporal coherence and reduce visual artifacts between adjacent frames. The results show our approach is efficient, easy to implement, and good quality progressive animation models can be generated at any level of detail.

[1]  Michael Gleicher,et al.  Deformation Sensitive Decimation , 2003 .

[2]  Valerio Pascucci,et al.  Multi-resolution dynamic meshes with arbitrary deformations , 2000 .

[3]  Michael Garland,et al.  Progressive multiresolution meshes for deforming surfaces , 2005, SCA '05.

[4]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[5]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[6]  Stefanie Hahmann,et al.  Deforming surface simplification based on dynamic geometry sampling , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[7]  西田 友是,et al.  Progressive 3D Animated Models for Mobile & Web Uses , 2005 .

[8]  Hélio Pedrini,et al.  A Comparative Evaluation of Metrics for Fast Mesh Simplification , 2006, Comput. Graph. Forum.

[9]  André Guéziec,et al.  Locally Toleranced Surface Simplification , 1999, IEEE Trans. Vis. Comput. Graph..

[10]  Siome Goldenstein,et al.  Adapted Dynamic Meshes for Deformable Surfaces , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.

[11]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[12]  Ligang Liu,et al.  Non-iterative approach for global mesh optimization , 2007, Comput. Aided Des..

[13]  Michael Garland,et al.  Multiresolution Modeling: Survey and Future Opportunities , 1999, Eurographics.

[14]  Scott Schaefer,et al.  Simplification of Articulated Meshes , 2009, Comput. Graph. Forum.

[15]  Bing-Yu Chen,et al.  Progressive deforming meshes based on deformation oriented decimation and dynamic connectivity updating , 2006, Symposium on Computer Animation.

[16]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[17]  Rao V. Garimella,et al.  Polygonal surface mesh optimization , 2004, Engineering with Computers.

[18]  Kok-Lim Low,et al.  Model simplification using vertex-clustering , 1997, SI3D.

[19]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[20]  Szymon Rusinkiewicz,et al.  Pose-independent simplification of articulated meshes , 2005, I3D '05.

[21]  David W. Jacobs,et al.  Mesh saliency , 2005, ACM Trans. Graph..

[22]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[23]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[24]  James E. Gain,et al.  Analytic simplification of animated characters , 2009, AFRIGRAPH '09.

[25]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[26]  Juin-Ling Tseng Progressive compression and surface analysis for 3D animation objects using temporal discrete shape operator , 2007, 2007 6th International Conference on Information, Communications & Signal Processing.

[27]  Valerio Pascucci,et al.  Multi-resolution dynamic meshes with arbitrary deformations , 2000, IEEE Visualization.

[28]  Valerio Pascucci,et al.  Temporal and spatial level of details for dynamic meshes , 2001, VRST '01.

[29]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[30]  Enhua Wu,et al.  A Shape Feature Based Simplification Method for Deforming Meshes , 2008, GMP.

[31]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[32]  M. Garland,et al.  Multiresolution Modeling: Survey & Future Opportunities , 1999 .

[33]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[34]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[35]  Tomoyuki Nishita,et al.  Progressive 3D Animated Models for Mobile & Web Uses , 2005 .

[36]  David Zhang,et al.  Mesh simplification with hierarchical shape analysis and iterative edge contraction , 2004, IEEE Transactions on Visualization and Computer Graphics.