Decomposition of marine biological tissues for determination of arsenic, selenium, and mercury using hydride-generation and cold-vapor atomic absorption spectrometries.

Three decomposition procedures for marine biological tissue samples were investigated for the subsequent determination of arsenic, selenium, and mercury by using hydride-generation and cold-vapor, AAS, respectively. (i) Decomposition with nitric acid under pressure in a PTFE bomb resulted in low values for arsenic and selenium but was adequate for the subsequent determination of mercury. (ii) Decomposition with nitric, sulfuric, and perchloric acids gave the highest values for arsenic and selenium, whereas mercury was partly lost under these conditions. (iii) Combustion in a stream of oxygen could be applied for all three elements and gave results that were in good agreement with the mean values of an intercalibration. Pressure decomposition with nitric acid is recommended for mercury, followed by a sulfuric and perchloric acids treatment for the subsequent determination of arsenic and selenium. Detection limits under routine conditions are 0.3 mg/kg for arsenic, 0.2 mg/kg for selenium, and 0.005 mg/kg for mercury. 29 references, 4 tables.

[1]  B. Welz,et al.  Versuche zur Bestimmung von Selen in Abwasser mit der Hydrid-AAS-Technik , 1984 .

[2]  B. Welz,et al.  Picotrace determination of mercury using the amalgamation technique , 1984 .

[3]  B. Welz,et al.  Mechanisms of transition metal interferences in hydride generation atomic-absorption spectrometry. Part 1. Influence of cobalt, copper, iron and nickel on selenium determination , 1984 .

[4]  B. Welz,et al.  Mechanisms of transition metal interferences in hydride generation atomic-absorption spectrometry. Part 3. Releasing effect of iron(III) on nickel interference on arsenic and selenium , 1984 .

[5]  G. Cutter Elimination of nitrite interference in the determination of selenium by hydride generation , 1983 .

[6]  H. Massmann The origin of systematic errors in background measurements in Zeeman atomic-absorption spectrometry. , 1982, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[7]  M. Verlinden On the acid decomposition of human blood and plasma for the determination of selenium. , 1982, Talanta.

[8]  L. D. Galan,et al.  Correction for background absorption and stray radiation in a.c. modulated Zeeman atomic absorption spectrometry , 1982 .

[9]  K. Julshamn,et al.  Optimization of the determination of selenium in marine samples by atomic absorption spectrometry: Comparison of a flameless graphite furnace atomic absorption system with a hydride generation atomic absorption system , 1982 .

[10]  J. Néve,et al.  Study of some systematic errors during the determination of the total selenium and some of its ionic species in biological materials. , 1982, In Analysis.

[11]  B. Welz,et al.  Mutual interactions of elements in the hydride technique in atomic absorption spectrometry , 1981 .

[12]  M. B. Denton,et al.  Interference by volatile nitrogen oxides and transition-metal catalysis in the preconcentration of arsenic and selenium as hydrides , 1981 .

[13]  G. Tölg,et al.  Decomposition of biological materials, rocks, and soils in pure oxygen under dynamic conditions for the determination of selenium at trace levels , 1981 .

[14]  B. Welz,et al.  Determination of antimony, arsenic, bismuth, selenium, tellurium, and tin in metallurgical samples using the hydride AA technique—I: Analysis of low-alloy steels , 1981 .

[15]  P. Schramel,et al.  A partially mechanized system for the combustion of organic samples in a stream of oxygen with quantitative recovery of the trace elements , 1981 .

[16]  G. Tölg,et al.  Selenbestimmung im μg/g- und ng/g-Bereich in anorganischen und organischen Matrices nach Verdampfungsanalyse im dynamischen System durch AAS , 1981 .

[17]  Wayne B. Robbins,et al.  Determination of germanium, arsenic, selenium, tin and antimony in complex samples by hydride generation-microwave-induced plasma atomic-emission spectrometry , 1979 .

[18]  W. Evans,et al.  Evaluation of a method for determination of total antimony, arsenic and tin in foodstuffs using measurement by atomic-absorption spectrophotometry with atomisation in a silica tube using the hydride generation technique. , 1979, The Analyst.

[19]  R. Stephens Feasibility of high-frequency field-modulation for Zeeman-modulated atomic-absorption spectrometers. , 1979, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[20]  G. Kaiser,et al.  Untersuchung von systematischen Fehlern bei der Bestimmung von Hg-Gesamtgehalten im Bereich < 10−5% in anorganischen und organischen Matrices mit zwei unabhängigen Verbundverfahren , 1978 .

[21]  J. Valentine,et al.  Acid interference in the determination of arsenic by atomic absorption spectrometry. , 1977, Analytical chemistry.

[22]  J. Jones,et al.  Sequential determination of arsenic, selenium, antimony, and tellurium in foods via rapid hydride evolution and atomic absorption spectrometry. , 1976, Analytical chemistry.

[23]  G. Kaiser,et al.  Aufschluß biologischer Matrices für die Bestimmung sehr niedriger Spurenelementgehalte bei begrenzter Einwaage mit Salpetersäure unter Druck in einem Teflongefäß , 1972 .