Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure

Lateral prefrontal and intraparietal cortices have strong connectional and functional associations but it is unclear how their common visuomotor, perceptual and working memory functions arise. The hierarchical scheme of cortical processing assumes that prefrontal cortex issues ‘feedback’ projections to parietal cortex. However, the architectonic heterogeneity of these cortices raises the question of whether distinct areas have laminar‐specific interconnections underlying their complex functional relationship. Using quantitative procedures, we showed that laminar‐specific connections between distinct prefrontal (areas 46 and 8) and lateral intraparietal (LIPv, LIPd and 7a) areas in Macaca mulatta, studied with neural tracers, varied systematically according to rules determined by the laminar architecture of the linked areas. We found that axons from areas 46 and rostral 8 terminated heavily in layers I–III of all intraparietal areas, as did caudal area 8 to area LIPv, suggesting ‘feedback’ communication. However, contrary to previous assumptions, axons from caudal area 8 terminated mostly in layers IV–V of LIPd and 7a, suggesting ‘feedforward’ communication. These laminar patterns of connections were highly correlated with consistent differences in neuronal density between linked areas. When neuronal density in a prefrontal origin was lower than in the intraparietal destination, most terminations were found in layer I with a concomitant decrease in layer IV. The opposite occurred when the prefrontal origin had a higher neuronal density than the target. These findings indicate that the neuronal density of linked areas can reliably predict their laminar connections and may form the basis of understanding the functional complexity of prefrontal–intraparietal interactions in cognition.

[1]  R. Knight,et al.  Lateral prefrontal damage affects processing selection but not attention switching. , 2002, Brain research. Cognitive brain research.

[2]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[3]  V. Mountcastle,et al.  Parietal lobe mechanisms for directed visual attention. , 1977, Journal of neurophysiology.

[4]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[5]  E. G. Jones,et al.  Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity , 1989, Brain Research.

[6]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[8]  Sensory and behavioral properties of neurons in posterior parietal cortex of the awake, trained monkey. , 1978, Federation proceedings.

[9]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[10]  E. G. Jones,et al.  Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities , 2004, Experimental Brain Research.

[11]  J. Lynch,et al.  Saccade initiation and latency deficits after combined lesions of the frontal and posterior eye fields in monkeys. , 1992, Journal of neurophysiology.

[12]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[13]  J. Hyvärinen,et al.  Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey , 2004, Experimental Brain Research.

[14]  Masataka Watanabe,et al.  Prefrontal unit activity and delayed response: Relation to cue location versus direction of response , 1976, Brain Research.

[15]  J. Fuster Behavioral electrophysiology of the prefrontal cortex , 1984, Trends in Neurosciences.

[16]  Helen Barbas,et al.  Synaptic distinction of laminar-specific prefrontal-temporal pathways in primates. , 2006, Cerebral cortex.

[17]  P. Morgane,et al.  Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis) , 1998, Journal of Chemical Neuroanatomy.

[18]  M. Mesulam,et al.  Additional factors influencing sensitivity in the tetramethyl benzidine method for horseradish peroxidase neurohistochemistry. , 1980, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[19]  H. Barbas,et al.  The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. , 2000, Cerebral cortex.

[20]  K. Rockland The Organization of Feedback Connections from Area V2 (18) to V1 (17) , 1994 .

[21]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[22]  T. P. S. Powell,et al.  The connections of area PG, 7a, with cortex in the parietal, occipital and temporal lobes of the monkey , 1990, Brain Research.

[23]  R. Mehra,et al.  Parvalbumin and calbindin D-28K immunoreactive neurons in area MT of rhesus monkey , 2001, Experimental Brain Research.

[24]  Jordan Grafman,et al.  Handbook of Neuropsychology , 1991 .

[25]  E G Jones,et al.  Neurochemical gradient along the monkey occipito-temporal cortical pathway. , 1994, Neuroreport.

[26]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[27]  Emad N Eskandar,et al.  Parietal activity and the perceived direction of ambiguous apparent motion , 2003, Nature Neuroscience.

[28]  David J. Freedman,et al.  A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization , 2003, The Journal of Neuroscience.

[29]  B. Seltzer,et al.  Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: Evidence for subdivisions of superior temporal polysensory cortex , 1995, The Journal of comparative neurology.

[30]  E. J. Tehovnik,et al.  Eye fields in the frontal lobes of primates , 2000, Brain Research Reviews.

[31]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[32]  H. Barbas,et al.  Architecture and cortical connections of the prefrontal cortex in the rhesus monkey. , 1992, Advances in neurology.

[33]  M. Bar A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition , 2003, Journal of Cognitive Neuroscience.

[34]  J. Schall,et al.  Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex , 2000, Vision Research.

[35]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[36]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple stimulus displays: II. responses are suppressed at the cued location. , 2001, Cerebral cortex.

[37]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[38]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[39]  J. Morrison,et al.  A subpopulation of primate corticocortical neurons is distinguished by somatodendritic distribution of neurofilament protein , 1991, Brain Research.

[40]  R. Andersen,et al.  Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes , 1985, The Journal of comparative neurology.

[41]  J. Lynch The functional organization of posterior parietal association cortex , 1980, Behavioral and Brain Sciences.

[42]  J. Hyvärinen,et al.  Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. , 1974, Brain : a journal of neurology.

[43]  Bruno B Averbeck,et al.  Neural activity in primate parietal area 7a related to spatial analysis of visual mazes. , 2004, Cerebral cortex.

[44]  H. Barbas,et al.  Medial Prefrontal Cortices Are Unified by Common Connections With Superior Temporal Cortices and Distinguished by Input From Memory‐Related Areas in the Rhesus Monkey , 1999, The Journal of comparative neurology.

[45]  P. Goldman-Rakic,et al.  Prefrontal Microcircuits: Membrane Properties and Excitatory Input of Local, Medium, and Wide Arbor Interneurons , 2001, The Journal of Neuroscience.

[46]  M. Corbetta,et al.  Two attentional processes in the parietal lobe. , 2002, Cerebral cortex.

[47]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[48]  Guy N Elston,et al.  Cortical heterogeneity: Implications for visual processing and polysensory integration , 2002, Journal of neurocytology.

[49]  J. L. Conway,et al.  Effects of frontal eye field and superior colliculus ablations on eye movements. , 1979, Science.

[50]  A. Burkhalter,et al.  Different Balance of Excitation and Inhibition in Forward and Feedback Circuits of Rat Visual Cortex , 1996, The Journal of Neuroscience.

[51]  B. C. Motter,et al.  The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  P. Goldman-Rakic,et al.  Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. , 1998, Journal of neurophysiology.

[53]  J. Morrison,et al.  Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein‐immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices , 1995, The Journal of comparative neurology.

[54]  Konrad Sandau,et al.  Unbiased Stereology. Three‐Dimensional Measurement in Microscopy. , 1999 .

[55]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[56]  H. Burton,et al.  Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates , 1976, The Journal of comparative neurology.

[57]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[58]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[59]  H. Barbas,et al.  Topographic Organization of Connections between the Hypothalamus and Prefrontal Cortex in the Rhesus Monkey , 2022 .

[60]  P. R. Hof,et al.  Design-based stereology in neuroscience , 2005, Neuroscience.

[61]  C C Hilgetag,et al.  Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. , 2001, Cerebral cortex.

[62]  E G Jones,et al.  Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Fuster,et al.  Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration. , 1993, Cerebral cortex.

[64]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[65]  J. Fuster Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. , 1973, Journal of neurophysiology.

[66]  E. G. Jones,et al.  A new view of specific and nonspecific thalamocortical connections. , 1998, Advances in neurology.

[67]  Keiji Tanaka,et al.  Neurochemical gradients along monkey sensory cortical pathways: calbindin‐immunoreactive pyramidal neurons in layers II and III , 1999, The European journal of neuroscience.

[68]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[69]  H. Barbas,et al.  Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey , 2005, BMC Neuroscience.

[70]  K. Kubota,et al.  Visuokinetic activities of primate prefrontal neurons during delayed-response performance. , 1974, Journal of neurophysiology.

[71]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[72]  F. Bremmer,et al.  Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. , 2002, Cerebral cortex.

[73]  Claus C. Hilgetag,et al.  Rules relating connections to cortical structure in primate prefrontal cortex , 2002, Neurocomputing.

[74]  S. Ben Hamed,et al.  Ocular fixation and visual activity in the monkey lateral intraparietal area , 2002, Experimental Brain Research.

[75]  Robinson Dl,et al.  Sensory and behavioral properties of neurons in posterior parietal cortex of the awake, trained monkey. , 1978 .

[76]  R. Wurtz,et al.  Visual receptive fields of frontal eye field neurons. , 1973, Brain research.

[77]  G. Elston,et al.  Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey , 1999, The Journal of comparative neurology.

[78]  G. J. Romanes,et al.  The Neocortex of Macaca mulatta , 1948 .

[79]  R. Wurtz,et al.  Signal transformations from cerebral cortex to superior colliculus for the generation of saccades , 2001, Vision Research.

[80]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple-stimulus displays: I. neurons encode the location of the salient stimulus. , 2001, Cerebral cortex.

[82]  P. Goldman-Rakic,et al.  Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. , 2000, Journal of neurophysiology.

[83]  P S Goldman-Rakic,et al.  Association of Storage and Processing Functions in the Dorsolateral Prefrontal Cortex of the Nonhuman Primate , 1999, The Journal of Neuroscience.

[84]  M. Mesulam Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[85]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[86]  P. Goldman-Rakic,et al.  Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. , 1999, Journal of neurophysiology.

[87]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[88]  H. J. G. Gundersen,et al.  The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[89]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[90]  D. Pandya,et al.  Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey , 1980, Brain Research.

[91]  M. Mesulam,et al.  Cortical afferent input to the principals region of the rhesus monkey , 1985, Neuroscience.

[92]  P. Goldman-Rakic,et al.  Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[93]  R. Andersen,et al.  Head position signals used by parietal neurons to encode locations of visual stimuli , 1995, Nature.

[94]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[95]  J. Lynch,et al.  Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. , 1996, Journal of neurophysiology.

[96]  H. Barbas,et al.  Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey , 1990, The Journal of comparative neurology.

[97]  J. Hyvärinen Posterior parietal lobe of the primate brain. , 1982, Physiological reviews.

[98]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions , 1996, The Journal of comparative neurology.

[99]  R. Wurtz,et al.  Enhancement of visual responses in monkey striate cortex and frontal eye fields. , 1976, Journal of neurophysiology.

[100]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[101]  R. M. Siegel,et al.  Neurons of area 7 activated by both visual stimuli and oculomotor behavior , 2004, Experimental Brain Research.

[102]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[104]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[105]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[106]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[107]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[108]  D. Lewis,et al.  Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. , 2000, Cerebral cortex.

[109]  H. Barbas,et al.  Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey. , 2005, Cerebral cortex.

[110]  M. Gershon,et al.  Evaluation of the activity of chemically identified enteric neurons through the histochemical demonstration of cytochrome oxidase , 1990, The Journal of comparative neurology.

[111]  T. L. Harrington,et al.  Neural mechanisms of space vision in the parietal association cortex of the monkey , 1985, Vision Research.

[112]  J. Bullier,et al.  Functional streams in occipito-frontal connections in the monkey , 1996, Behavioural Brain Research.

[113]  D. Pandya,et al.  Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry , 1977, Brain Research.

[114]  Michael Petrides,et al.  Restricted posterior parietal lesions in the rhesus monkey and performance on visuospatial tasks , 1979, Brain Research.

[115]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[116]  D. Rosene,et al.  A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. , 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[117]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[118]  David J. Freedman,et al.  The prefrontal cortex: categories, concepts and cognition. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[119]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[120]  Christian Quaia,et al.  The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields , 1998, Neural Networks.