Quantum-classical correspondence in entanglement production: Entropy and classical tori

We analyze the connections between entanglement dynamics and classical trajectories in a semiclassical regime for two systems: A pair of coupled oscillators and the Jaynes-Cummings model. We find that entanglement production depends on classical invariant tori and such phenomenon is closely related to the power spectra of classical trajectories. Classical power spectrum with a larger number of frequency components corresponds to larger entanglement. We introduce a frequency entropy to describe the classical frequency distribution. It is found that there is good correspondence between the classical frequency entropies and the maximum von Neumann entropies.

[1]  A. Matzkin,et al.  Dynamical entanglement and chaos: The case of Rydberg molecules , 2006, quant-ph/0606069.

[2]  P. Jacquod,et al.  Lyapunov generation of entanglement and the correspondence principle. , 2005, Physical review letters.

[3]  L. Turner Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit , 2004 .

[4]  C. Hörhammer,et al.  Thermodynamics of quantum Brownian motion with internal degrees of freedom: the role of entanglement in the strong-coupling quantum regime , 2004, cond-mat/0408536.

[5]  K. Moriarty,et al.  Comparison of classical chaos with quantum chaos , 2004, quant-ph/0406109.

[6]  B. Sanders,et al.  Entanglement Dynamics in Chaotic Systems , 2004, quant-ph/0404171.

[7]  B. Sanders,et al.  Entanglement as a signature of quantum chaos. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  M. S. Santhanam Entropic uncertainty relations for the ground state of a coupled system (8 pages) , 2003, quant-ph/0308147.

[9]  P. Jacquod Semiclassical time evolution of the reduced density matrix and dynamically assisted generation of entanglement for bipartite quantum systems. , 2003, Physical review letters.

[10]  Jayendra N. Bandyopadhyay,et al.  Entanglement production in coupled chaotic systems: Case of the kicked tops. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  A. Bolivar Quantum-Classical Correspondence , 2004 .

[12]  A. Lahiri,et al.  Dynamical manifestation of quantum chaos: density matrix fluctuations in subsystems , 2003 .

[13]  M. C. D. Oliveira,et al.  Decoherence in strongly coupled quantum oscillators , 2003, quant-ph/0309082.

[14]  A. J. Scott,et al.  Entangling power of the quantum baker's map , 2003, quant-ph/0305046.

[15]  T. Miyadera,et al.  Dynamical aspects of quantum entanglement for weakly coupled kicked tops. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  T. Miyadera,et al.  Saturation of the production of quantum entanglement between weakly coupled mapping systems in a strongly chaotic region. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Jayendra N. Bandyopadhyay,et al.  Testing statistical bounds on entanglement using quantum chaos. , 2002, Physical review letters.

[18]  M. Baranger,et al.  Comment on ‘Semiclassical approximations in phase space with coherent states’ , 2001, quant-ph/0105153.

[19]  A. Lakshminarayan Entangling power of quantized chaotic systems. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  A. Rajagopal,et al.  Decoherence, correlation, and entanglement in a pair of coupled quantum dissipative oscillators , 2000, quant-ph/0009003.

[21]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[22]  P. Miller,et al.  Signatures of chaos in the entanglement of two coupled quantum kicked tops. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  M. Nemes,et al.  QUANTUM DYNAMICAL MANIFESTATION OF CHAOTIC BEHAVIOR IN THE PROCESS OF ENTANGLEMENT , 1998 .

[24]  P. Brumer,et al.  Quantum-classical correspondence via Liouville dynamics. I. Integrable systems and the chaotic spectral decomposition , 1996, chao-dyn/9608013.

[25]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Zeng,et al.  Scaling in quantum chaos: A study of quantum dots. , 1994, Physical review. B, Condensed matter.

[27]  M. Nemes,et al.  Chaos in a spin-boson system: Classical analysis , 1992 .

[28]  J. Anchell Quantum and classical descriptions of position and phase‐space densities of a model Hamiltonian , 1990 .

[29]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[30]  Gregory S. Ezra,et al.  EBK quantization of nonseparable systems: A Fourier transform method , 1985 .

[31]  A. Peres,et al.  Classical limit of quantum chaos , 1985 .

[32]  J. Klauder,et al.  COHERENT STATES: APPLICATIONS IN PHYSICS AND MATHEMATICAL PHYSICS , 1985 .

[33]  P. Brumer,et al.  Classical‐quantum correspondence in the distribution dynamics of integrable systems , 1985 .

[34]  P. Brumer,et al.  Classical Liouville mechanics and intramolecular relaxation dynamics , 1984 .

[35]  A. R. Edmonds,et al.  Comparison of classical and quantum spectra for a totally bound potential , 1981 .

[36]  D. W. Noid,et al.  Semiclassical calculation of eigenvalues for a three‐dimensional system , 1980 .

[37]  Rudolph A. Marcus,et al.  Semiclassical calculation of bound states in a multidimensional system for nearly 1:1 degenerate systems , 1977 .