Carbon enables the practical use of lithium metal in a battery

[1]  T. Zhai,et al.  Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries , 2017, Advanced materials.

[2]  X. Tao,et al.  3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries , 2017 .

[3]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[4]  M. Jaroniec,et al.  Na2Ti3O7@N‐Doped Carbon Hollow Spheres for Sodium‐Ion Batteries with Excellent Rate Performance , 2017, Advanced materials.

[5]  Kun Fu,et al.  Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer , 2017, Advanced materials.

[6]  Yayuan Liu,et al.  Nanoscale perspective: Materials designs and understandings in lithium metal anodes , 2017, Nano Research.

[7]  Qi Li,et al.  3D Porous Cu Current Collector/Li‐Metal Composite Anode for Stable Lithium‐Metal Batteries , 2017 .

[8]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[9]  Ya‐Xia Yin,et al.  Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. , 2017, Journal of the American Chemical Society.

[10]  Hong‐Jie Peng,et al.  Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries , 2017 .

[11]  Yan‐Bing He,et al.  Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte , 2017, Advanced materials.

[12]  Hui Wu,et al.  High performance lithium metal anode: Progress and prospects , 2017 .

[13]  Shaomao Xu,et al.  High-capacity, low-tortuosity, and channel-guided lithium metal anode , 2017, Proceedings of the National Academy of Sciences.

[14]  Boyang Liu,et al.  A carbon-based 3D current collector with surface protection for Li metal anode , 2017, Nano Research.

[15]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[16]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[17]  K. Yuan,et al.  Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy-High Power Lithium-Sulfur Batteries. , 2017, ACS applied materials & interfaces.

[18]  Ya‐Xia Yin,et al.  Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping , 2016, Advanced science.

[19]  A. Bhatt,et al.  Anion effect on lithium electrodeposition from N‐propyl‐N‐methylpyrrolidinium bis(fluorosulfonyl)imide ionic liquid electrolytes , 2016 .

[20]  K. Yuan,et al.  Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. , 2016, ACS applied materials & interfaces.

[21]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[22]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[23]  Tianyu Tang,et al.  Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective , 2016 .

[24]  Martin Z. Bazant,et al.  Transition of lithium growth mechanisms in liquid electrolytes , 2016 .

[25]  Chongwu Zhou,et al.  A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life , 2016, Nano Research.

[26]  Yi Cui,et al.  Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries , 2016 .

[27]  Yan‐Bing He,et al.  Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes , 2016, Advanced materials.

[28]  T. Rojo,et al.  Towards High‐Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy , 2016, Advanced science.

[29]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[30]  Jin Ge,et al.  Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. , 2016, Nano letters.

[31]  Changhong Liu,et al.  The effect of the carbon nanotube buffer layer on the performance of a Li metal battery. , 2016, Nanoscale.

[32]  Wei Lv,et al.  Graphene Emerges as a Versatile Template for Materials Preparation. , 2016, Small.

[33]  Rui Zhang,et al.  Li2S5-based ternary-salt electrolyte for robust lithium metal anode , 2016 .

[34]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[35]  Yayuan Liu,et al.  Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode , 2016, Nature Communications.

[36]  K. Ng,et al.  Ionic liquid decorated mesoporous silica nanoparticles: a new high-performance hybrid electrolyte for lithium batteries. , 2016, Chemical communications.

[37]  Xin-Bing Cheng,et al.  Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth , 2016, Advanced materials.

[38]  Ya‐Xia Yin,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[39]  Yi Cui,et al.  Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating , 2016, Proceedings of the National Academy of Sciences.

[40]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[41]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[42]  Jiaqi Huang,et al.  Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects , 2015 .

[43]  Yan‐Bing He,et al.  “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery , 2015 .

[44]  Feng Wu,et al.  Systematic Effect for an Ultralong Cycle Lithium-Sulfur Battery. , 2015, Nano letters.

[45]  Aravindaraj G. Kannan,et al.  Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries. , 2015, ACS applied materials & interfaces.

[46]  Xin-Bing Cheng,et al.  Janus Separator of Polypropylene‐Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries , 2015, Advanced science.

[47]  Young‐Jun Kim,et al.  Conductive porous carbon film as a lithium metal storage medium , 2015 .

[48]  R. Nigmatullin The generalized multi-dimensional platform for data array classification , 2015 .

[49]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[50]  M. Jaroniec,et al.  Molecular-based design and emerging applications of nanoporous carbon spheres. , 2015, Nature materials.

[51]  Wu Xu,et al.  Anodes for Rechargeable Lithium‐Sulfur Batteries , 2015 .

[52]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[53]  Rui Zhang,et al.  Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries. , 2015, ACS nano.

[54]  Guangyuan Zheng,et al.  Polymer nanofiber-guided uniform lithium deposition for battery electrodes. , 2015, Nano letters.

[55]  Joo-Seong Kim,et al.  Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive , 2015 .

[56]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[57]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[58]  Terence J. Lozano,et al.  Failure Mechanism for Fast‐Charged Lithium Metal Batteries with Liquid Electrolytes , 2015 .

[59]  H. Yadegari,et al.  Three-dimensional MnO2 ultrathin nanosheet aerogels for high-performance Li–O2 batteries , 2015 .

[60]  Changhong Liu,et al.  Modified secondary lithium metal batteries with the polyaniline-carbon nanotube composite buffer layer. , 2015, Chemical communications.

[61]  Selena M. Russell,et al.  Dendrite-free lithium deposition with self-aligned nanorod structure. , 2014, Nano letters.

[62]  Nikhil Koratkar,et al.  Enhanced lithiation in defective graphene , 2014 .

[63]  S. Chu,et al.  Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. , 2014, Nano letters.

[64]  Hua Zhang,et al.  Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High‐Performance Li‐Ion Batteries and Oxygen Reduction Reaction , 2014, Advanced materials.

[65]  S. Honda,et al.  Toll-like receptor 4 and MAIR-II/CLM-4/LMIR2 immunoreceptor regulate VLA-4-mediated inflammatory monocyte migration , 2014, Nature Communications.

[66]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[67]  Wei Lv,et al.  Nanospace-confined formation of flattened Sn sheets in pre-seeded graphenes for lithium ion batteries. , 2014, Nanoscale.

[68]  Xu Li,et al.  Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. , 2014, Chemical Society reviews.

[69]  B. Liaw,et al.  A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .

[70]  Yi Cui,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[71]  Junhong Chen,et al.  Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High‐Performance Lithium‐Ion Battery Anode , 2014, Advanced materials.

[72]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[73]  Dongping Lu,et al.  Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures , 2014, Nature Communications.

[74]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[75]  Ya‐Xia Yin,et al.  Self‐Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium‐Ion Batteries , 2012 .

[76]  G. Stucky,et al.  Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition , 2012 .

[77]  B. Jang,et al.  Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells , 2012 .

[78]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[79]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[80]  Feng Li,et al.  Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. , 2011, ACS nano.

[81]  G. Cui,et al.  Nitrogen-doped graphene nanosheets with excellent lithium storage properties , 2011 .

[82]  Quan-hong Yang,et al.  Double coaxial structure and dual physicochemical properties of carbon nanotubes composed of stacked nitrogen-doped and undoped multiwalls , 2005 .

[83]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[84]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[85]  M. Rosso,et al.  Onset of dendritic growth in lithium/polymer cells , 2001 .

[86]  J.-N. Chazalviel,et al.  In situ study of dendritic growth inlithium/PEO-salt/lithium cells , 1998 .

[87]  J. Yamaki,et al.  A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , 1997 .

[88]  H. A. Christopher,et al.  Lithium‐Aluminum Electrode , 1977 .

[89]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[90]  Quan-hong Yang,et al.  Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges , 2016 .

[91]  M. Rosso,et al.  Study of the evolution of the Li/electrolyte interface during cycling of Li/polymer batteries , 2001 .

[92]  R. Koksbang,et al.  Rechargeable lithium battery anodes: alternatives to metallic lithium , 1993 .