Generalized theory of uncertainty (GTU) - principal concepts and ideas

[1]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[2]  Leo Egghe,et al.  Uncertainty and information: Foundations of generalized information theory , 2007, J. Assoc. Inf. Sci. Technol..

[3]  Lotfi A. Zadeh,et al.  Precisiated Natural Language , 2007, Aspects of Automatic Text Analysis.

[4]  Ronald R. Yager,et al.  Perception-based granular probabilities in risk modeling and decision making , 2006, IEEE Transactions on Fuzzy Systems.

[5]  Vilém Vychodil,et al.  Attribute Implications in a Fuzzy Setting , 2006, ICFCA.

[6]  Gert de Cooman,et al.  A behavioural model for vague probability assessments , 2005, Fuzzy Sets Syst..

[7]  Lotfi A. Zadeh,et al.  Toward a generalized theory of uncertainty (GTU) - an outline , 2005, GrC.

[8]  Lotfi A. Zadeh,et al.  Toward a generalized theory of uncertainty (GTU)--an outline , 2005, Inf. Sci..

[9]  N. Singpurwalla,et al.  Membership Functions and Probability Measures of Fuzzy Sets , 2004 .

[10]  Lotfi A. Zadeh,et al.  A note on web intelligence, world knowledge and fuzzy logic , 2004, Data Knowl. Eng..

[11]  Lotfi A. Zadeh,et al.  Precisiated Natural Language (PNL) , 2004, AI Mag..

[12]  George J. Klir,et al.  Generalized information theory: aims, results, and open problems , 2004, Reliab. Eng. Syst. Saf..

[13]  L. A. Zadeh,et al.  Fuzzy logic and approximate reasoning , 1975, Synthese.

[14]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[15]  Vladik Kreinovich,et al.  Which truth values in fuzzy logics are definable? , 2003, Int. J. Intell. Syst..

[16]  Jonathan Lawry,et al.  Modelling with words : learning, fusion, and reasoning within a formal linguistic representation framework , 2003 .

[17]  Ronald R. Yager,et al.  Uncertainty representation using fuzzy measures , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[18]  Jonathan Lawry,et al.  A methodology for computing with words , 2001, Int. J. Approx. Reason..

[19]  Ana Colubi,et al.  On the formalization of fuzzy random variables , 2001, Inf. Sci..

[20]  Lotfi A. Zadeh,et al.  Toward a Perception-Based Theory of Probabilistic Reasoning , 2000, Rough Sets and Current Trends in Computing.

[21]  Bernadette Bouchon-Meunier,et al.  Uncertainty in Intelligent and Information Systems , 2000 .

[22]  L. A. Zadeh,et al.  From computing with numbers to computing with words. manipulation of measurements to manipulation of perceptions , 1999, Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296).

[23]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[24]  L. Yang Fuzzy Logic with Engineering Applications , 1999 .

[25]  Lotfi A. Zadeh,et al.  Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems , 1998, Soft Comput..

[26]  W. Pedrycz,et al.  An introduction to fuzzy sets : analysis and design , 1998 .

[27]  Witold Pedrycz,et al.  An Introduction to Fuzzy Sets , 1998 .

[28]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[29]  Serge Boverie,et al.  Applications of fuzzy logic: towards high machine intelligence quotient systems , 1997 .

[30]  Didier Dubois,et al.  Fuzzy information engineering: a guided tour of applications , 1997 .

[31]  Lotfi A. Zadeh,et al.  Possibility theory and soft data analysis , 1996 .

[32]  L. A. Zadeh,et al.  Outline of a computational approach to meaning and knowledge representation based on the concept of a generalized assignment statement , 1996 .

[33]  Lotfi A. Zadeh,et al.  Precisiation of meaning via translation into PRUF , 1996 .

[34]  Lotfi A. Zadeh,et al.  On the analysis of large-scale systems , 1996 .

[35]  Lotfi A. Zadeh,et al.  Test-score semantics for natural languages and meaning representation via PRUF , 1996 .

[36]  Philippe Smets,et al.  Imperfect Information: Imprecision and Uncertainty , 1996, Uncertainty Management in Information Systems.

[37]  Hao Ying,et al.  Essentials of fuzzy modeling and control , 1995 .

[38]  Lucien Duckstein,et al.  Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems , 1995 .

[39]  John Yen,et al.  Industrial Applications of Fuzzy Logic and Intelligent Systems , 1995 .

[40]  Didier Dubois Henri Prade,et al.  Non-standard theories of uncertainty in knowledge representation and reasoning , 1994, The Knowledge Engineering Review.

[41]  M. Mares,et al.  Computation Over Fuzzy Quantities , 1994 .

[42]  D. Schum The Evidential Foundations of Probabilistic Reasoning , 1994 .

[43]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[44]  Didier Dubois,et al.  Gradual inference rules in approximate reasoning , 1992, Inf. Sci..

[45]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[46]  W. Pedrycz,et al.  Fuzzy Relation Equations and Their Applications to Knowledge Engineering , 1989, Theory and Decision Library.

[47]  Henri Prade,et al.  Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..

[48]  Caroline M. Eastman,et al.  Response: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[49]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[50]  Hung T. Nguyen,et al.  Uncertainty Models for Knowledge-Based Systems; A Unified Approach to the Measurement of Uncertainty , 1985 .

[51]  H. Zimmermann Introduction to Fuzzy Sets , 1985 .

[52]  Hung T. Nguyen On modeling of linguistic information using random sets , 1984, Inf. Sci..

[53]  Jaakko Hintikka,et al.  Cognitive Constraints on Communication , 1984 .

[54]  L. Zadeh A fuzzy-set-theoretic approach to the compositionality of meaning: , 1983 .

[55]  ScienceDirect Computational statistics & data analysis , 1983 .

[56]  Lotfi A. Zadeh,et al.  A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[57]  Vijay K. Rohatgi,et al.  Advances in Fuzzy Set Theory and Applications , 1980 .

[58]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[59]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[60]  Lotfi A. Zadeh,et al.  A fuzzy-algorithmic approach to the definition of complex or imprecise concepts , 1976 .

[61]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Man Mach. Stud..

[62]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[63]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[64]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[65]  Karel Lambert,et al.  Meaning Relations, Possible Objects, and Possible Worlds , 1970 .

[66]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[67]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[68]  Antony Flew,et al.  Logic and Language , 1979 .

[69]  H. Jeffreys Logical Foundations of Probability , 1952, Nature.

[70]  R. Carnap Logical foundations of probability , 1951 .