Urea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesis.

[1]  A. Bäumler,et al.  The microbiome and gut homeostasis , 2022, Science.

[2]  G. Suen,et al.  Nitrogen recycling via gut symbionts increases in ground squirrels over the hibernation season , 2022, Science.

[3]  Haiping Hao,et al.  Emerging targetome and signalome landscape of gut microbial metabolites. , 2022, Cell metabolism.

[4]  W. Janssen,et al.  Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells , 2022, Cell reports.

[5]  Jared C Malke,et al.  Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response , 2021, Science.

[6]  Xinxiang Li,et al.  Dysbiosis of human gut microbiome in young-onset colorectal cancer , 2021, Nature Communications.

[7]  T. R. Licht,et al.  Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut , 2021, Nature Microbiology.

[8]  Jie Hong,et al.  Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosomes-packaged miR-149-3p. , 2021, Gastroenterology.

[9]  A. Regev,et al.  Metabolic modeling of single Th17 cells reveals regulators of autoimmunity , 2021, Cell.

[10]  C. Mackay,et al.  Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. , 2021, Cell metabolism.

[11]  Fangfang Guo,et al.  F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer , 2020, Gut.

[12]  F. Bäckhed,et al.  Gut microbial metabolites as multi-kingdom intermediates , 2020, Nature reviews. Microbiology.

[13]  F. Powrie,et al.  Host–microbiota maladaptation in colorectal cancer , 2020, Nature.

[14]  Bo Zhong,et al.  The deubiquitinase USP25 supports colonic inflammation and bacterial infection and promotes colorectal cancer , 2020, Nature Cancer.

[15]  A. Pentland,et al.  Overcoming barriers to early disease intervention , 2020, Nature Biotechnology.

[16]  M. Haigis,et al.  Nitrogen Metabolism in Cancer and Immunity. , 2020, Trends in cell biology.

[17]  Tong Zhao,et al.  Using apelin-based synthetic Notch receptors to detect angiogenesis and treat solid tumors , 2020, Nature Communications.

[18]  A. Jemal,et al.  Colorectal cancer statistics, 2020 , 2020, CA: a cancer journal for clinicians.

[19]  Rob Knight,et al.  Microbiome analyses of blood and tissues suggest cancer diagnostic approach , 2020, Nature.

[20]  D. Ransohoff,et al.  Colorectal Cancer Incidence and Mortality After Removal of Adenomas During Screening Colonoscopies. , 2020, Gastroenterology.

[21]  Christopher D. Jensen,et al.  Long-term Risk of Colorectal Cancer and Related Death After Adenoma Removal in a Large, Community-based Population. , 2020, Gastroenterology.

[22]  Christian H. Holland,et al.  Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data , 2020, Genome Biology.

[23]  A. Regev,et al.  In Silico Modeling of Metabolic State in Single Th17 Cells Reveals Novel Regulators of Inflammation and Autoimmunity , 2020, bioRxiv.

[24]  Jun Sun,et al.  Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. , 2020, Gastroenterology.

[25]  J. Sonnenburg,et al.  Pursuing Human-Relevant Gut Microbiota-Immune Interactions. , 2019, Immunity.

[26]  Larry N. Singh,et al.  Host mitochondria influence gut microbiome diversity: A role for ROS , 2019, Science Signaling.

[27]  Takuji Yamada,et al.  Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer , 2019, Nature Medicine.

[28]  P. Bork,et al.  Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation , 2019, Nature Medicine.

[29]  J. McQuade,et al.  Modulating the microbiome to improve therapeutic response in cancer. , 2019, The Lancet. Oncology.

[30]  Mack T. Ruffin,et al.  Diagnostic Potential and Interactive Dynamics of the Colorectal Cancer Virome , 2018, mBio.

[31]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[32]  A. Pegg,et al.  Polyamine metabolism and cancer: treatments, challenges and opportunities , 2018, Nature Reviews Cancer.

[33]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[34]  Weiqun Li,et al.  Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment , 2017, Journal of Immunotherapy for Cancer.

[35]  Fangfang Guo,et al.  Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy , 2017, Cell.

[36]  V. Sperandio,et al.  Interactions between the microbiota and pathogenic bacteria in the gut , 2016, Nature.

[37]  Tian-Tian Sun,et al.  LncRNA GClnc1 Promotes Gastric Carcinogenesis and May Act as a Modular Scaffold of WDR5 and KAT2A Complexes to Specify the Histone Modification Pattern. , 2016, Cancer discovery.

[38]  W. Garrett,et al.  Gut microbiota, metabolites and host immunity , 2016, Nature Reviews Immunology.

[39]  P. Bork,et al.  Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing , 2016, PloS one.

[40]  S. Manalis,et al.  Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. , 2016, Developmental cell.

[41]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[42]  Jason B. Williams,et al.  Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy , 2015, Science.

[43]  Jun Yu,et al.  Gut mucosal microbiome across stages of colorectal carcinogenesis , 2015, Nature Communications.

[44]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[45]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[46]  Sarah A Teichmann,et al.  Computational assignment of cell-cycle stage from single-cell transcriptome data. , 2015, Methods.

[47]  Qiang Feng,et al.  Gut microbiome development along the colorectal adenoma–carcinoma sequence , 2015, Nature Communications.

[48]  Jens Roat Kultima,et al.  Molecular Systems Biology Peer Review Process File Potential of Fecal Microbiota for Early Stage Detection of Colorectal Cancer Transaction Report , 2022 .

[49]  S. Lipkin,et al.  Unbiased metabolite profiling indicates that a diminished thymidine pool is the underlying mechanism of colon cancer chemoprevention by alpha-difluoromethylornithine. , 2013, Cancer discovery.

[50]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[51]  J. Nicholson,et al.  Host-Gut Microbiota Metabolic Interactions , 2012, Science.

[52]  M. Bertagnolli,et al.  Molecular origins of cancer: Molecular basis of colorectal cancer. , 2009, The New England journal of medicine.

[53]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[54]  T. Forrester,et al.  The transfer of 15N from urea to lysine in the human infant , 2000, British Journal of Nutrition.

[55]  J. Gordon,et al.  How host-microbial interactions shape the nutrient environment of the mammalian intestine. , 2002, Annual review of nutrition.