Quantum Rabi Model with Trapped Ions

We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep strong coupling regimes of such a paradigmatic light-matter interaction. Furthermore, associated with these extreme dipolar regimes, we study the controlled generation and detection of their entangled ground states by means of adiabatic methods. Ion traps have arguably performed the first quantum simulation of the Jaynes-Cummings model, a restricted regime of the quantum Rabi model where the rotating-wave approximation holds. We show that one can go beyond and experimentally investigate the quantum simulation of coupling regimes of the quantum Rabi model that are difficult to achieve with natural dipolar interactions.

[1]  F. Laussy,et al.  Focus on cavity and circuit quantum electrodynamics in solids , 2015 .

[2]  Cristiano Ciuti,et al.  Extracavity quantum vacuum radiation from a single qubit , 2009, 0906.2706.

[3]  J Casanova,et al.  Deep strong coupling regime of the Jaynes-Cummings model. , 2010, Physical review letters.

[4]  C. Sirtori,et al.  Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies. , 2009, Physical review letters.

[5]  E. Solano,et al.  Digital Quantum Rabi and Dicke Models in Superconducting Circuits , 2014, Scientific Reports.

[6]  J J García-Ripoll,et al.  Switchable ultrastrong coupling in circuit QED. , 2009, Physical review letters.

[7]  R. Blatt,et al.  Quantum simulation of the Dirac equation , 2009, Nature.

[8]  S. De Liberato Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. , 2014, Physical review letters.

[9]  R. Feynman Simulating physics with computers , 1999 .

[10]  Mahn‐Soo Choi,et al.  Variational study of a two-level system coupled to a harmonic oscillator in an ultrastrong-coupling regime , 2010, 1006.1989.

[11]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[12]  E. Solano,et al.  Photon transfer in ultrastrongly coupled three-cavity arrays , 2013, 1304.6221.

[13]  Barrington. Moore The Outlook , 1956 .

[14]  H. Risken,et al.  Quantum Collapses and Revivals in a Quantized Trap , 1992 .

[15]  E. Solano,et al.  Parity-dependent State Engineering and Tomography in the ultrastrong coupling regime , 2014, Scientific Reports.

[16]  Andreas Tünnermann,et al.  Classical simulation of relativistic Zitterbewegung in photonic lattices. , 2010, Physical review letters.

[17]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[18]  D. Wineland Nobel Lecture: Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[19]  Dynamical correlation functions and the quantum Rabi model , 2012, 1211.6469.

[20]  S. Maier,et al.  Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities , 2013 .

[21]  S. De Liberato,et al.  Light-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. , 2013, Physical review letters.

[22]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[23]  E. Solano,et al.  Scalable quantum memory in the ultrastrong coupling regime , 2014, Scientific Reports.

[24]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[25]  E. Solano,et al.  Circuit quantum electrodynamics in the ultrastrong-coupling regime , 2010 .

[26]  D. Wineland Superposition, Entanglement, and Raising Schroedinger′s Cat (Nobel Lecture) , 2013 .

[27]  A. Vasanelli,et al.  Ultra-strong light–matter coupling for designer Reststrahlen band , 2014 .

[28]  A. D. Boozer,et al.  Trapped atoms in cavity QED: coupling quantized light and matter , 2005 .

[29]  Mesoscopic superpositions of vibronic collective states of N trapped ions. , 2001, Physical review letters.

[30]  P. Haljan,et al.  Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. , 2004, Physical review letters.

[31]  E Solano,et al.  Dirac equation and quantum relativistic effects in a single trapped ion. , 2007, Physical review letters.

[32]  D. Braak,et al.  Integrability of the Rabi model. , 2011, Physical review letters.

[33]  Serge Haroche,et al.  Controlling photons in a box and exploring the quantum to classical boundary , 2013, Angewandte Chemie.

[34]  M. Hartmann,et al.  Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime. , 2012, Physical review letters.

[35]  E. Solano,et al.  Deterministic Bell states and measurement of the motional state of two trapped ions , 1999 .

[36]  Cristiano Ciuti,et al.  Quantum vacuum properties of the intersubband cavity polariton field , 2005, cond-mat/0504021.

[37]  E. Solano The dialogue between quantum light and matter , 2011 .

[38]  S. Haroche Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary , 2013 .

[39]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[40]  David J. Wineland,et al.  Superposition, entanglement, and raising Schrödinger's cat , 2013 .

[41]  Jean-Michel Raimond,et al.  Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.

[42]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[43]  V. Muravev,et al.  Observation of hybrid plasmon-photon modes in microwave transmission of coplanar microresonators , 2011 .

[44]  Martin Weitz,et al.  Klein tunneling of a quasirelativistic Bose-Einstein condensate in an optical lattice. , 2011, Physical review letters.

[45]  I. I. Rabi,et al.  On the Process of Space Quantization , 1936 .

[46]  A. Messiah Quantum Mechanics , 1961 .

[47]  E Solano,et al.  Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. , 2010, Physical review letters.

[48]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[49]  M. Beck,et al.  Ultrastrong Coupling of the Cyclotron Transition of a 2D Electron Gas to a THz Metamaterial , 2011, Science.

[50]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[51]  E. Solano,et al.  Quantum Simulation of the Ultrastrong Coupling Dynamics in Circuit QED , 2011, 1107.5748.

[52]  Wineland,et al.  Laser cooling to the zero-point energy of motion. , 1989, Physical review letters.

[53]  A. V. Dodonov,et al.  Rabi model beyond the rotating-wave approximation: Generation of photons from vacuum through decoherence , 2008, 0806.3475.