The Future of Coastal Altimetry

Conventional ocean-viewing radar altimeters (RA) have inherent limitations that become especially apparent when considering applications in the coastal environment. This chapter looks at three new technologies, two of which are to be on forthcoming missions: the delay-Doppler (or SAR mode) altimeter, to be embarked on CryoSat-2 and Sentinel-3, and Alti-Ka, on India’s SARAL mission (previously Oceansat-3). These instruments are nadir-viewing, each featuring a smaller footprint, improved tracking, and finer measurement precision. Wide swath techniques also are reviewed, represented by KaRIn. That concept offers altimetric coverage over an area that extends nominally 80 km to both sides of its nadir track. Relative to coastal applications, all three approaches have their respective advantages and limitations, highlighted in the discussion.

[1]  L. C. Graham,et al.  Synthetic interferometer radar for topographic mapping , 1974 .

[2]  Jacques Richard,et al.  An advanced concept of radar altimetry over oceans with improved performances and ocean sampling : AltiKa , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[3]  R. Keith Raney,et al.  WITTEX: an innovative three-satellite radar altimeter concept , 2001, IEEE Trans. Geosci. Remote. Sens..

[4]  Edward J. Walsh,et al.  Pulse‐to‐pulse correlation in satellite radar altimeters , 1982 .

[5]  L. Phalippou,et al.  Re-tracking of SAR altimeter ocean power-waveforms and related accuracies of the retrieved sea surface height, significant wave height and wind speed , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[6]  Laurent Rey,et al.  AltiKa: a Ka-band Altimetry Payload and System for Operational Altimetry during the GMES Period , 2006, Sensors (Basel, Switzerland).

[7]  Ernesto Rodríguez,et al.  An assessment of the Ka band interferometric radar altimeter for monitoring rivers and lakes with the WatER mission , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Jean Tournadre,et al.  Cloud and Rain Effects on AltiKa/SARAL Ka-Band Radar Altimeter—Part I: Modeling and Mean Annual Data Availability , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[9]  L. Phalippou,et al.  CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields ☆ , 2006 .

[10]  E. Rodriguez,et al.  Centimetric sea surface height accuracy using the Wide-Swath Ocean altimeter , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[11]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[12]  J. MacArthur,et al.  Design of the SEASAT-A Radar Altimeter , 1976 .

[13]  T. Akins,et al.  The wide swath ocean altimeter: radar interferometry for global ocean mapping with centimetric accuracy , 2002, Proceedings, IEEE Aerospace Conference.

[14]  Edward J. Walsh,et al.  An analysis of a satellite multibeam altimeter , 1984 .

[15]  Edward J. Walsh,et al.  Pulse Compression and Sea Level Tracking in Satellite Altimetry , 1989 .

[16]  Laurent Phalippou,et al.  End to end performances of a short baseline interferometric radar altimeter for ocean mesoscale topography , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[17]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[18]  Constantin Mavrocordatos,et al.  SRAL SAR radar altimeter for sentinel-3 mission , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[19]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[20]  R. Moore,et al.  Radar Terrain Return at Near-Vertical Incidence , 1957, Proceedings of the IRE.

[21]  David T. Sandwell,et al.  Conventional Bathymetry, Bathymetry from Space, and Geodetic Altimetry , 2004 .

[22]  Michael Eineder,et al.  SRTM and beyond: current situation and new developments in spaceborne InSAR , 2003 .

[23]  G. Brown The average impulse response of a rough surface and its applications , 1977 .

[24]  G. Hayne,et al.  Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering , 1980 .

[25]  L. Rey,et al.  Siral the radar altimeter for the cryosat mission, pre-launch performances , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[26]  R. Keith Raney,et al.  The delay/Doppler radar altimeter , 1998, IEEE Trans. Geosci. Remote. Sens..

[27]  F. Henderson,et al.  Principles and Applications of Imaging Radar , 1998 .

[28]  Christian Jayles,et al.  DORIS-DIODE: Jason-1 has a Navigator on Board , 2004 .

[29]  G. Jolly,et al.  The GANDER constellation for maritime dissaster mitigation , 1999 .

[30]  G N Tsandoulas Space-Based Radar , 1987, Science.

[31]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .