Almost all cop-win graphs contain a universal vertex

We consider cop-win graphs in the binomial random graph G(n,1/2). We prove that almost all cop-win graphs contain a universal vertex. From this result, we derive that the asymptotic number of labelled cop-win graphs of order n is equal to (1+o(1))n2^n^^^2^/^2^-^3^n^/^2^+^1.

[1]  Anthony Bonato,et al.  The cop density of a graph , 2007, Contributions Discret. Math..

[2]  Tomasz Łuczak,et al.  Chasing robbers on random graphs: Zigzag theorem , 2010 .

[3]  Tomasz Luczak,et al.  Chasing robbers on random graphs: Zigzag theorem , 2010, Random Struct. Algorithms.

[4]  Anthony Bonato,et al.  Pursuit-Evasion in Models of Complex Networks , 2007, Internet Math..

[5]  Gary MacGillivray,et al.  Characterizations of k-copwin graphs , 2012, Discret. Math..

[6]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[7]  Peter Winkler,et al.  Vertex-to-vertex pursuit in a graph , 1983, Discret. Math..

[8]  Pawel Pralat When does a random graph have constant cop number? , 2010, Australas. J Comb..

[9]  Anthony Bonato,et al.  The Game of Cops and Robbers on Graphs , 2011 .

[10]  Béla Bollobás,et al.  Cops and robbers in a random graph , 2013, J. Comb. Theory, Ser. B.

[11]  Dimitrios M. Thilikos,et al.  An annotated bibliography on guaranteed graph searching , 2008, Theor. Comput. Sci..

[12]  Martin Aigner,et al.  A game of cops and robbers , 1984, Discret. Appl. Math..

[13]  B. Alspach SEARCHING AND SWEEPING GRAPHS: A BRIEF SURVEY , 2006 .