Isolated optical vortex knots
暂无分享,去创建一个
Mark R. Dennis | Miles J. Padgett | Kevin O'Holleran | Robert P. King | R. P. King | B. Jack | M. Padgett | M. Dennis | K. O’Holleran | B. Jack
[1] M. Berry,et al. Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[2] John Milnor,et al. Singular Points of Complex Hypersurfaces. (AM-61), Volume 61 , 1969 .
[3] L. Rudolph. Isolated critical points of mappings from R4 to R2 and a natural splitting of the Milnor number of a classical fibered link. Part I: Basic theory; examples , 1987 .
[4] M. J. Padgett,et al. Vortex knots in light , 2005 .
[5] The Mathematical Heritage of C F Gauss , 1991 .
[6] Mark R. Dennis,et al. Topology of light's darkness. , 2009, Physical review letters.
[7] J. Milnor. Singular points of complex hypersurfaces , 1968 .
[8] Mark R. Dennis,et al. Singular optics: optical vortices and polarization singularities , 2009 .
[9] Barbara Perron. Le noeud «Huit» est Algebrique Réel , 1982 .
[10] Johannes Courtial,et al. Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm , 2005 .
[11] Mark R. Dennis,et al. Topological events on wave dislocation lines: birth and death of loops, and reconnection , 2007 .
[12] M. Padgett,et al. Methodology for imaging the 3D structure of singularities in scalar and vector optical fields , 2009 .
[13] Richard A. Battye,et al. Knots as stable soliton solutions in a three-dimensional classical field theory. , 1998 .
[14] Sir William Thomson F.R.S.. II. On vortex atoms , 1867 .
[15] D. Rolfsen. Knots and Links , 2003 .
[16] H. K. Moffatt,et al. The degree of knottedness of tangled vortex lines , 1969, Journal of Fluid Mechanics.
[17] Volker Westphal,et al. Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.
[18] C. E. Wieman,et al. Vortices in a Bose Einstein condensate , 1999, QELS 2000.
[19] Carlo F. Barenghi,et al. Geometry and Topology of Superfluid Turbulence , 2003 .
[20] M. Berry,et al. Knotted and linked phase singularities in monochromatic waves , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[21] Miles J Padgett,et al. Fractality of light's darkness. , 2008, Physical review letters.
[22] E. Winfree,et al. Organizing centers in a cellular excitable medium , 1985 .
[23] Antti J. Niemi,et al. Stable knot-like structures in classical field theory , 1997, nature.
[24] I. Freund. Saddle point wave fields , 1999 .
[25] A. T. Winfree,et al. Persistent tangled vortex rings in generic excitable media , 1994, Nature.
[26] D. Grier. A revolution in optical manipulation , 2003, Nature.
[27] Dirk Bouwmeester,et al. Linked and knotted beams of light , 2008 .
[28] J. Ruostekoski,et al. Engineering vortex rings and systems for controlled studies of vortex interactions in Bose-Einstein condensates , 2005 .
[29] Kenneth C. Millett,et al. A LOAD BALANCED ALGORITHM FOR THE CALCULATION OF THE POLYNOMIAL KNOT AND LINK INVARIANTS , 1991 .