On uniqueness and monotonicity of solutions of non-local reaction diffusion equation

This article deals with the uniqueness and the behavior of solutions of non-local reaction diffusion equations. Since these equations share many properties with the usual reaction diffusion model, such as a form of maximum principle and the translation invariance, uniqueness and monotone behavior for the solution, as in the usual case, are expected. I present an elementary proof of this monotone behavior. The proof essentially uses techniques based on the maximum principle and the sliding method.

[1]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[2]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[3]  Henri Berestycki,et al.  Travelling fronts in cylinders , 1992 .

[4]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[5]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[6]  Robert Kersner,et al.  Travelling Waves in Nonlinear Diffusion-Convection Reaction , 2004 .

[7]  J. B. Zeldowitsch,et al.  A Theory of Thermal Propagation of Flame , 1988 .

[8]  Henri Berestycki,et al.  Quelques aspects mathématiques de la propagation des flammes prémélangées , 1988 .

[9]  Ronald Aylmer Sir Fisher,et al.  The genetical theory of natural selection: a complete variorum edition. , 1999 .

[10]  J. Coville Equations de reaction diffusion non-locale , 2003 .

[11]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[12]  L. Nirenberg,et al.  Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations , 1988 .

[13]  Peter W. Bates,et al.  Periodic traveling waves and locating oscillating patterns in multidimensional domains , 1999 .

[14]  L. Nirenberg,et al.  Some Qualitative Properties of Solutions of Semilinear Elliptic Equations in Cylindrical Domains , 1990 .

[15]  Jérôme Coville,et al.  Propagation speed of travelling fronts in non local reaction–diffusion equations , 2005 .

[16]  Henri Berestycki,et al.  On the method of moving planes and the sliding method , 1991 .

[17]  EQUATIONSXinfu Chen EXISTENCE , UNIQUENESS , ANDASYMPTOTIC STABILITY OF TRAVELING WAVESIN NONLOCAL EVOLUTION , 1997 .

[18]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[19]  José M. Vega,et al.  Travelling wavefronts of reaction-di usion equations in cylindrical domains , 1993 .

[20]  P. Bates,et al.  Traveling Waves in a Convolution Model for Phase Transitions , 1997 .