Fluid Level Sensing Using Artificial Neural Networks

The basic principles and applications of capacitive type sensors including some issues relating to application of capacitive type level sensing systems in dynamic environments were discussed in Chap. 2. In this chapter, first, the fundamental principles of signal classification and processing are discussed. Then the background and applications of Artificial Neural Networks (ANN) in the context of this research are described. Finally, the use of neural networks in providing solutions to the problems encountered in fluid level measurement in dynamic environments is described.

[1]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[2]  Harald Hruschka,et al.  Comparing performance of feedforward neural nets and K-means for cluster-based market segmentation , 1999, Eur. J. Oper. Res..

[3]  James C. Bezdek,et al.  Fuzzy mathematics in pattern classification , 1973 .

[4]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[5]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[6]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[7]  Ganapati Panda,et al.  An intelligent pressure sensor using neural networks , 2000, IEEE Trans. Instrum. Meas..

[8]  Gunnar Rätsch,et al.  Advanced lectures on machine learning : ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen, Germany, August 4-16, 2003 : revised lectures , 2004 .

[9]  E. Brigham,et al.  The fast Fourier transform and its applications , 1988 .

[10]  David Zipser,et al.  Feature Discovery by Competive Learning , 1986, Cogn. Sci..

[11]  Gerard V. Trunk,et al.  A Problem of Dimensionality: A Simple Example , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  David Salomon,et al.  Data Compression: The Complete Reference , 2006 .

[13]  Robert X. Gao,et al.  Discrete Wavelet Transform , 2011 .

[14]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[15]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[16]  Wilfrid S. Kendall,et al.  Networks and Chaos - Statistical and Probabilistic Aspects , 1993 .

[17]  Greg Humphreys,et al.  Sampling and Reconstruction , 2010 .

[18]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[19]  Mark S. Nixon,et al.  Feature Extraction and Image Processing , 2002 .

[20]  J.C. Patra,et al.  Neural network-based self-calibration/compensation of sensors operating in harsh environments [smart pressure sensor example] , 2004, Proceedings of IEEE Sensors, 2004..

[21]  Paulo S. R. Diniz,et al.  Adaptive Filtering: Algorithms and Practical Implementation , 1997 .

[22]  Vojin G. Oklobdzija The Computer Engineering Handbook , 2007 .

[23]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[24]  S. Mallat A wavelet tour of signal processing , 1998 .

[25]  Brian D. Ripley,et al.  Statistical aspects of neural networks , 1993 .