Meyer sets, topological eigenvalues, and Cantor fiber bundles

We introduce two new characterizations of Meyer sets. A repetitive Delone set in Rd with finite local complexity is topologically conjugate to a Meyer set if and only if it has d linearly independent topological eigenvalues, which is if and only if it is topologically conjugate to a bundle over a d-torus with totally disconnected compact fiber and expansive canonical action. "Conjugate to" is a non-trivial condition, as we show that there exist sets that are topologically conjugate to Meyer sets but are not themselves Meyer. We also exhibit a diffractive set that is not Meyer, answering in the negative a question posed by Lagarias, and exhibit a Meyer set for which the measurable and topological eigenvalues are different.

[1]  Jeffrey C. Lagarias,et al.  Meyer's concept of quasicrystal and quasiregular sets , 1996 .

[2]  Natalie Priebe Frank,et al.  Fusion: A general framework for hierarchical tilings , 2013, 1311.5555.

[3]  Robert V. Moody,et al.  The Mathematics of Long-Range Aperiodic Order , 1997 .

[4]  Bernard Host,et al.  Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable , 1986, Ergodic Theory and Dynamical Systems.

[5]  Michael Baake,et al.  Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability , 1991 .

[6]  Lorenzo Sadun,et al.  When shape matters: deformations of tiling spaces , 2003, Ergodic Theory and Dynamical Systems.

[7]  R. Kenyon,et al.  Topological mixing for substitutions on two letters , 2004, Ergodic Theory and Dynamical Systems.

[8]  D. Lenz Continuity of Eigenfunctions of Uniquely Ergodic Dynamical Systems and Intensity of Bragg Peaks , 2006, math-ph/0608026.

[9]  M. Baake,et al.  Characterization of model sets by dynamical systems , 2005, Ergodic Theory and Dynamical Systems.

[10]  Boris Solomyak,et al.  Consequences of Pure Point Diffraction Spectra for Multiset Substitution Systems , 2009, Discret. Comput. Geom..

[11]  R. Moody Recent developments in the mathematics of diffraction , 2008 .

[12]  S. Dworkin Spectral theory and x-ray diffraction , 1993 .

[13]  Jean-Baptiste Gouéré Quasicrystals and Almost Periodicity , 2002 .

[14]  Jeffrey C. Lagarias,et al.  Geometric Models for Quasicrystals I. Delone Sets of Finite Type , 1999, Discret. Comput. Geom..

[15]  At Hof,et al.  On diffraction by aperiodic structures , 1995 .

[16]  Tiling spaces are Cantor set fiber bundles , 2001, Ergodic Theory and Dynamical Systems.

[17]  Nicolae Strungaru,et al.  Almost Periodic Measures and Long-Range Order in Meyer Sets , 2005, Discret. Comput. Geom..

[18]  Nicolae Strungaru,et al.  On the Bragg Diffraction Spectra of a Meyer Set , 2010, Canadian Journal of Mathematics.

[19]  M. Barge,et al.  Cohomology in one-dimensional substitution tiling spaces , 2007, math/0702669.

[20]  A. Maass,et al.  On the eigenvalues of finite rank Bratteli–Vershik dynamical systems , 2009, Ergodic Theory and Dynamical Systems.

[21]  On the dynamics of G-solenoids. Applications to Delone sets , 2002, math/0208243.

[22]  Natalie Priebe Frank,et al.  Fusion: a general framework for hierarchical tilings of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^ , 2011, Geometriae Dedicata.

[23]  Yves Meyer,et al.  Quasicrystals, Diophantine approximation and algebraic numbers , 1995 .

[24]  Proximality and pure point spectrum for tiling dynamical systems , 2011, 1108.4065.

[25]  María Isabel Cortez,et al.  Continuous and Measurable Eigenfunctions of Linearly Recurrent Dynamical Cantor Systems , 2003, 0801.4616.

[26]  M. Baake,et al.  Weighted Dirac combs with pure point diffraction , 2002, math/0203030.

[27]  A. Maass,et al.  Necessary and Sufficient Conditions to be an Eigenvalue for Linearly Recurrent Dynamical Cantor Systems , 2005, 0801.4619.

[28]  M. Baake,et al.  Institute for Mathematical Physics Dynamical Systems on Translation Bounded Measures: Pure Point Dynamical and Diffraction Spectra Dynamical Systems on Translation Bounded Measures: Pure Point Dynamical and Diffraction Spectra , 2022 .

[29]  Yves Meyer,et al.  Algebraic numbers and harmonic analysis , 1972 .

[30]  Y. Meyer Quasicrystals, Almost Periodic Patterns, Mean-periodic Functions and Irregular Sampling , 2012 .

[31]  L. Sadun Pattern-equivariant cohomology with integer coefficients , 2006, Ergodic Theory and Dynamical Systems.

[32]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[33]  Boris Solomyak,et al.  Pure Point Dynamical and Diffraction Spectra , 2002, 0910.4809.

[34]  Basarab Matei,et al.  Quasicrystals are sets of stable sampling , 2008 .

[35]  M. Baake,et al.  Mathematical quasicrystals and the problem of diffraction , 2000 .

[36]  J. G. D. Lamadrid,et al.  Almost Periodic Measures , 1990 .

[37]  M. Baake,et al.  Generalized model sets and dynamical systems , 2000 .