Optimal partitioning for spatiotemporal coverage in a drift field
暂无分享,去创建一个
[1] Arthur E. Bryson,et al. Applied Optimal Control , 1969 .
[2] Francesco Bullo,et al. Distributed Control of Robotic Networks , 2009 .
[3] James A. Sethian,et al. Level Set Methods and Fast Marching Methods , 1999 .
[4] J. Ball. OPTIMIZATION—THEORY AND APPLICATIONS Problems with Ordinary Differential Equations (Applications of Mathematics, 17) , 1984 .
[5] Igor Mezic,et al. Minimum time feedback control of autonomous underwater vehicles , 2010, 49th IEEE Conference on Decision and Control (CDC).
[6] Dinesh Manocha,et al. Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.
[7] Efstathios Bakolas,et al. Relay pursuit of a maneuvering target using dynamic Voronoi diagrams , 2012, Autom..
[8] Giuseppe Buttazzo,et al. Calculus of Variations and Partial Differential Equations , 1988 .
[9] Sonia Martinez,et al. Deployment algorithms for mobile robots under dynamic constraints , 2011 .
[10] Francesco Bullo,et al. Coordination and Geometric Optimization via Distributed Dynamical Systems , 2003, SIAM J. Control. Optim..
[11] L. Berkovitz. Optimal Control Theory , 1974 .
[12] A. Bryson,et al. Methods for Computing Minimum-Time Paths in Strong Winds , 2010 .
[13] E B Lee,et al. Foundations of optimal control theory , 1967 .
[14] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[15] Rolf Klein,et al. Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.
[16] V. Jurdjevic. Geometric control theory , 1996 .
[17] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[18] Constantin Carathéodory,et al. Calculus of variations and partial differential equations of the first order , 1965 .
[19] Lamberto Cesari,et al. Optimization-Theory And Applications , 1983 .
[20] Efstathios Bakolas,et al. The Zermelo-Voronoi Diagram: a dynamic partition problem , 2010, Proceedings of the 2010 American Control Conference.
[21] Kokichi Sugihara,et al. Voronoi diagrams in a river , 1992, Int. J. Comput. Geom. Appl..
[22] Kokichi Sugihara,et al. Boat-Sail Voronoi Diagram and its Application , 2009, Int. J. Comput. Geom. Appl..
[23] Eduardo D. Sontag,et al. Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .
[24] Mariette Yvinec,et al. Algorithmic geometry , 1998 .
[25] E. Zermelo. Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung , 1931 .
[26] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[27] Efstathios Bakolas,et al. Minimum-Time Paths for a Small Aircraft in the Presence of Regionally-Varying Strong Winds , 2010 .
[28] Arthur Getis,et al. Models of spatial processes : an approach to the study of point, line, and area patterns , 1979 .
[29] Efstathios Bakolas,et al. Optimal pursuit of moving targets using dynamic Voronoi diagrams , 2010, 49th IEEE Conference on Decision and Control (CDC).
[30] Kokichi Sugihara,et al. Stable marker-particle method for the Voronoi diagram in a flow field , 2007 .
[31] Sonia Martínez,et al. Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.
[32] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[33] F. Bullo,et al. Motion Coordination with Distributed Information , 2007 .
[34] Jonathan Richard Shewchuk,et al. Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation , 2003, SCG '03.
[35] Ulysse Serres. On the curvature of two-dimensional optimal control systems and Zermelo’s navigation problem , 2006 .
[36] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[37] Renato Zanetti,et al. Kalman Filters with Uncompensated Biases , 2012 .
[38] Markus Denny,et al. Solving Geometric Optimization Problems using Graphics Hardware , 2003, Comput. Graph. Forum.
[39] Sake J. Bijlsma. Optimal Aircraft Routing in General Wind Fields , 2009 .
[40] Mac Schwager,et al. Decentralized, Adaptive Coverage Control for Networked Robots , 2009, Int. J. Robotics Res..
[41] Mariette Yvinec,et al. Anisotropic Diagrams: Labelle Shewchuk approach revisited , 2005, CCCG.
[42] D. Ucinski. Optimal sensor location for parameter estimation of distributed processes , 2000 .
[43] Francesco Bullo,et al. Vehicle placement to intercept moving targets , 2010, Proceedings of the 2010 American Control Conference.
[44] Hans Sagan,et al. Introduction to the Calculus of Variations. , 1969 .
[45] Vladlen Koltun. Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[46] Jorge Cortes,et al. Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms , 2009 .
[47] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..