Optimal partitioning for spatiotemporal coverage in a drift field

Abstract We consider the problem of partitioning an area in the plane populated by a team of aerial/marine vehicles into a finite collection of non-overlapping sets. The sets of this partition are in an one-to-one correspondence with the vehicles under the following rule: each point in the given set of the partition can be reached by the corresponding vehicle in this set faster than any other vehicle in the presence of a spatiotemporal drift field. Consequently, a Voronoi-like partition results, which encodes the proximity relations between the vehicles and arbitrary points in the plane with respect to the minimum time-to-go. The construction of this Voronoi-like partition is based on its interpretation as the intersection of a forest of the cost (minimum time-to-go) surfaces emanating from each generator with their common lower envelope. The characterization of each cost surface is achieved by means of an efficient expansion scheme of the level sets of the minimum time-to-go function, which utilizes, in turn, the structure of the optimal synthesis of the minimum-time problem without resorting to exhaustive numerical techniques, e.g., fast marching methods. We examine the topological characteristics of the partition by using control/system theoretic concepts and tools. The theoretical developments are illustrated with a number of numerical examples.

[1]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[2]  Francesco Bullo,et al.  Distributed Control of Robotic Networks , 2009 .

[3]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[4]  J. Ball OPTIMIZATION—THEORY AND APPLICATIONS Problems with Ordinary Differential Equations (Applications of Mathematics, 17) , 1984 .

[5]  Igor Mezic,et al.  Minimum time feedback control of autonomous underwater vehicles , 2010, 49th IEEE Conference on Decision and Control (CDC).

[6]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[7]  Efstathios Bakolas,et al.  Relay pursuit of a maneuvering target using dynamic Voronoi diagrams , 2012, Autom..

[8]  Giuseppe Buttazzo,et al.  Calculus of Variations and Partial Differential Equations , 1988 .

[9]  Sonia Martinez,et al.  Deployment algorithms for mobile robots under dynamic constraints , 2011 .

[10]  Francesco Bullo,et al.  Coordination and Geometric Optimization via Distributed Dynamical Systems , 2003, SIAM J. Control. Optim..

[11]  L. Berkovitz Optimal Control Theory , 1974 .

[12]  A. Bryson,et al.  Methods for Computing Minimum-Time Paths in Strong Winds , 2010 .

[13]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[14]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[15]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[16]  V. Jurdjevic Geometric control theory , 1996 .

[17]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[18]  Constantin Carathéodory,et al.  Calculus of variations and partial differential equations of the first order , 1965 .

[19]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[20]  Efstathios Bakolas,et al.  The Zermelo-Voronoi Diagram: a dynamic partition problem , 2010, Proceedings of the 2010 American Control Conference.

[21]  Kokichi Sugihara,et al.  Voronoi diagrams in a river , 1992, Int. J. Comput. Geom. Appl..

[22]  Kokichi Sugihara,et al.  Boat-Sail Voronoi Diagram and its Application , 2009, Int. J. Comput. Geom. Appl..

[23]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[24]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[25]  E. Zermelo Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung , 1931 .

[26]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[27]  Efstathios Bakolas,et al.  Minimum-Time Paths for a Small Aircraft in the Presence of Regionally-Varying Strong Winds , 2010 .

[28]  Arthur Getis,et al.  Models of spatial processes : an approach to the study of point, line, and area patterns , 1979 .

[29]  Efstathios Bakolas,et al.  Optimal pursuit of moving targets using dynamic Voronoi diagrams , 2010, 49th IEEE Conference on Decision and Control (CDC).

[30]  Kokichi Sugihara,et al.  Stable marker-particle method for the Voronoi diagram in a flow field , 2007 .

[31]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[32]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[33]  F. Bullo,et al.  Motion Coordination with Distributed Information , 2007 .

[34]  Jonathan Richard Shewchuk,et al.  Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation , 2003, SCG '03.

[35]  Ulysse Serres On the curvature of two-dimensional optimal control systems and Zermelo’s navigation problem , 2006 .

[36]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[37]  Renato Zanetti,et al.  Kalman Filters with Uncompensated Biases , 2012 .

[38]  Markus Denny,et al.  Solving Geometric Optimization Problems using Graphics Hardware , 2003, Comput. Graph. Forum.

[39]  Sake J. Bijlsma Optimal Aircraft Routing in General Wind Fields , 2009 .

[40]  Mac Schwager,et al.  Decentralized, Adaptive Coverage Control for Networked Robots , 2009, Int. J. Robotics Res..

[41]  Mariette Yvinec,et al.  Anisotropic Diagrams: Labelle Shewchuk approach revisited , 2005, CCCG.

[42]  D. Ucinski Optimal sensor location for parameter estimation of distributed processes , 2000 .

[43]  Francesco Bullo,et al.  Vehicle placement to intercept moving targets , 2010, Proceedings of the 2010 American Control Conference.

[44]  Hans Sagan,et al.  Introduction to the Calculus of Variations. , 1969 .

[45]  Vladlen Koltun Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[46]  Jorge Cortes,et al.  Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms , 2009 .

[47]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..